Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 2 papers out of 2 papers

A Multicenter Study to Assess EGFR Mutational Status in Plasma: Focus on an Optimized Workflow for Liquid Biopsy in a Clinical Setting.

  • Laure Sorber‎ et al.
  • Cancers‎
  • 2018‎

A multicenter study was performed to determine an optimal workflow for liquid biopsy in a clinical setting. In total, 549 plasma samples from 234 non-small cell lung cancer (NSCLC) patients were collected. Epidermal Growth Factor Receptor (EGFR) circulating cell-free tumor DNA (ctDNA) mutational analysis was performed using digital droplet PCR (ddPCR). The influence of (pre-) analytical variables on ctDNA analysis was investigated. Sensitivity of ctDNA analysis was influenced by an interplay between increased plasma volume (p < 0.001) and short transit time (p = 0.018). Multistep, high-speed centrifugation both increased plasma generation (p < 0.001) and reduced genomic DNA (gDNA) contamination. Longer transit time increased the risk of hemolysis (p < 0.001) and low temperatures were shown to have a negative effect. Metastatic sites were found to be strongly associated with ctDNA detection (p < 0.001), as well as allele frequency (p = 0.034). Activating mutations were detected in a higher concentration and allele frequency compared to the T790M mutation (p = 0.003, and p = 0.002, respectively). Optimization of (pre-) analytical variables is key to successful ctDNA analysis. Sufficient plasma volumes without hemolysis or gDNA contamination can be achieved by using multistep, high-speed centrifugation, coupled with short transit time and temperature regulation. Metastatic site location influenced ctDNA detection. Finally, ctDNA levels might have further value in detecting resistance mechanisms.


Circulating Cell-Free DNA and RNA Analysis as Liquid Biopsy: Optimal Centrifugation Protocol.

  • Laure Sorber‎ et al.
  • Cancers‎
  • 2019‎

The combined analysis of circulating cell-free (tumor) DNA (cfDNA/ctDNA) and circulating cell-free (tumor) RNA (cfRNA/ctRNA) shows great promise in determining the molecular profile of cancer patients. Optimization of the workflow is necessary to achieve consistent and reproducible results. In this study, we compared five centrifugation protocols for the optimal yield of both cfDNA/ctDNA and cfRNA/ctRNA. These protocols varied in centrifugation speed, ambient temperature, time, and number of centrifugation steps. Samples from 33 participants were collected in either BD Vacutainer K₂EDTA (EDTA) tubes or cell-free DNA BCT® (Streck) tubes. cfDNA concentration and fragment size, and cfRNA concentration were quantitated in all samples by digital droplet PCR (ddPCR) and quantitative PCR (qPCR). The KRAS-mutated ctDNA and ctRNA fraction was determined via ddPCR. In EDTA tubes, the protocol generating both plasma and platelets was found to produce high quality cfDNA and cfRNA concentrations. Two-step, high-speed centrifugation protocols were associated with high cfDNA but low cfRNA concentrations. High cfRNA concentrations were generated by a one-step, low-speed protocol. However, this coincided with a high amount of genomic DNA (gDNA) contamination. In Streck tubes, two-step, high-speed centrifugation protocols also generated good quality, high cfDNA concentration. However, these tubes are not compatible with cfRNA analysis.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: