Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 5 papers out of 5 papers

Identification of synaptosomal proteins binding to monomeric and oligomeric α-synuclein.

  • Cristine Betzer‎ et al.
  • PloS one‎
  • 2015‎

Monomeric α-synuclein (αSN) species are abundant in nerve terminals where they are hypothesized to play a physiological role related to synaptic vesicle turn-over. In Parkinson's disease (PD) and dementia with Lewy body (DLB), αSN accumulates as aggregated soluble oligomers in terminals, axons and the somatodendritic compartment and insoluble filaments in Lewy inclusions and Lewy neurites. The autosomal dominant heritability associated to mutations in the αSN gene suggest a gain of function associated to aggregated αSN. We have conducted a proteomic screen to identify the αSN interactome in brain synaptosomes. Porcine brain synaptosomes were fractionated, solubilized in non-denaturing detergent and subjected to co-immunoprecipitation using purified recombinant human αSN monomers or oligomers as bait. The isolated αSN binding proteins were identified with LC-LTQ-orbitrap tandem mass spectrometry and quantified by peak area using Windows client application, Skyline Targeted Proteomic Environment. Data are available via ProteomeXchange with identifier PXD001462. To quantify the preferential binding an average fold increase was calculated by comparing binding to monomer and oligomer. We identified 10 proteins preferentially binding monomer, and 76 binding preferentially to oligomer and a group of 92 proteins not displaying any preferred conformation of αSN. The proteomic data were validated by immunoprecipitation in both human and porcine brain extracts using antibodies against monomer αSN interactors: Abl interactor 1, and myelin proteolipid protein, and oligomer interactors: glutamate decarboxylase 2, synapsin 1, glial fibrillary acidic protein, and VAMP-2. We demonstrate the existence of αSN conformation selective ligands and present lists of proteins, whose identity and functions will be useful for modeling normal and pathological αSN dependent processes.


ELISA method to detect α-synuclein oligomers in cell and animal models.

  • Louise Berkhoudt Lassen‎ et al.
  • PloS one‎
  • 2018‎

Soluble aggregates of α-synuclein, so-called oligomers, are hypothesized to act as neurotoxic species in Parkinson's disease, Lewy body dementia and multiple systems atrophy, but specific tools to detect these aggregated species are only slowly appearing. We have developed an α-synuclein oligomer ELISA that allows us to detect and compare α-synuclein oligomer levels in different in vivo and in vitro experiments. The ELISA is based on commercially available antibodies and the epitope of the capture antibody MJF14-6-4-2 is folding- and aggregate-dependent and not present on monomers.


Stabilization of α-synuclein oligomers using formaldehyde.

  • Harm Ruesink‎ et al.
  • PloS one‎
  • 2019‎

The group of neurodegenerative diseases, Parkinson's disease (PD), dementia with Lewy bodies (DLB), and multiple system atrophy (MSA) all exhibit inclusions containing amyloid-type α-synuclein (α-syn) aggregates within degenerating brain cells. α-syn also exists as soluble oligomeric species that are hypothesized to represent intermediates between its native and aggregated states. These oligomers are present in brain extracts from patients suffering from synucleinopathies and hold great potential as biomarkers. Although easily prepared in vitro, oligomers are metastable and dissociate over time, thereby complicating α-syn oligomer research. Using the small amine-reactive cross-linker, formaldehyde (FA), we successfully stabilized α-syn oligomers without affecting their size, overall structure or antigenicity towards aggregate-conformation specific α-syn antibodies FILA and MJFR-14-6-4-2. Further, cross-linked α-syn oligomers show resistance towards denaturant like urea and SDS treatment and remain fully functional as internal standard in an aggregation-specific enzyme-linked immunosorbent assay (ELISA) despite prior incubation with urea. We propose that FA cross-linked α-syn oligomers could serve as important calibrators to facilitate comparative and standardized α-syn biomarker studies going forward.


Mannose 6-Phosphate Receptor Is Reduced in -Synuclein Overexpressing Models of Parkinsons Disease.

  • Carmela Matrone‎ et al.
  • PloS one‎
  • 2016‎

Increasing evidence points to defects in autophagy as a common denominator in most neurodegenerative conditions. Progressive functional decline in the autophagy-lysosomal pathway (ALP) occurs with age, and the consequent impairment in protein processing capacity has been associated with a higher risk of neurodegeneration. Defects in cathepsin D (CD) processing and α-synuclein degradation causing its accumulation in lysosomes are particularly relevant for the development of Parkinson's disease (PD). However, the mechanism by which alterations in CD maturation and α-synuclein degradation leads to autophagy defects in PD neurons is still uncertain. Here we demonstrate that MPR300 shuttling between endosomes and the trans Golgi network is altered in α-synuclein overexpressing neurons. Consequently, CD is not correctly trafficked to lysosomes and cannot be processed to generate its mature active form, leading to a reduced CD-mediated α-synuclein degradation and α-synuclein accumulation in neurons. MPR300 is downregulated in brain from α-synuclein overexpressing animal models and in PD patients with early diagnosis. These data indicate MPR300 as crucial player in the autophagy-lysosomal dysfunctions reported in PD and pinpoint MRP300 as a potential biomarker for PD.


Polo-like kinase 2 inhibition reduces serine-129 phosphorylation of physiological nuclear alpha-synuclein but not of the aggregated alpha-synuclein.

  • Sara Elfarrash‎ et al.
  • PloS one‎
  • 2021‎

Accumulation of aggregated alpha-synuclein (α-syn) is believed to play a pivotal role in the pathophysiology of Parkinson's disease (PD) and other synucleinopathies. As a key constituent of Lewy pathology, more than 90% of α-syn in Lewy bodies is phosphorylated at serine-129 (pS129) and hence, it is used extensively as a marker for α-syn pathology. However, the exact role of pS129 remains controversial and the kinase(s) responsible for the phosphorylation have yet to be determined. In this study, we investigated the effect of Polo-like kinase 2 (PLK2) inhibition on formation of pS129 using an ex vivo organotypic brain slice model of synucleinopathy. Our data demonstrated that PLK2 inhibition has no effect on α-syn aggregation, pS129 or inter-neuronal spreading of the aggregated α-syn seen in the organotypic slices. Instead, PLK2 inhibition reduced the soluble pS129 level in the nuclei. The same finding was replicated in an in vivo mouse model of templated α-syn aggregation and in human dopaminergic neurons, suggesting that PLK2 is more likely to be involved in S129-phosphorylation of the soluble physiological fraction of α-syn. We also demonstrated that reduction of nuclear pS129 following PLK2 inhibition for a short time before sample collection improves the signal-to-noise ratio when quantifying pS129 aggregate pathology.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: