Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 20 papers out of 53 papers

PINK1 cleavage at position A103 by the mitochondrial protease PARL.

  • Emma Deas‎ et al.
  • Human molecular genetics‎
  • 2011‎

Mutations in PTEN-induced kinase 1 (PINK1) cause early onset autosomal recessive Parkinson's disease (PD). PINK1 is a 63 kDa protein kinase, which exerts a neuroprotective function and is known to localize to mitochondria. Upon entry into the organelle, PINK1 is cleaved to produce a ∼53 kDa protein (ΔN-PINK1). In this paper, we show that PINK1 is cleaved between amino acids Ala-103 and Phe-104 to generate ΔN-PINK1. We demonstrate that a reduced ability to cleave PINK1, and the consequent accumulation of full-length protein, results in mitochondrial abnormalities reminiscent of those observed in PINK1 knockout cells, including disruption of the mitochondrial network and a reduction in mitochondrial mass. Notably, we assessed three N-terminal PD-associated PINK1 mutations located close to the cleavage site and, while these do not prevent PINK1 cleavage, they alter the ratio of full-length to ΔN-PINK1 protein in cells, resulting in an altered mitochondrial phenotype. Finally, we show that PINK1 interacts with the mitochondrial protease presenilin-associated rhomboid-like protein (PARL) and that loss of PARL results in aberrant PINK1 cleavage in mammalian cells. These combined results suggest that PINK1 cleavage is important for basal mitochondrial health and that PARL cleaves PINK1 to produce the ΔN-PINK1 fragment.


Mitochondrial quality control and neurological disease: an emerging connection.

  • Inês Pimenta de Castro‎ et al.
  • Expert reviews in molecular medicine‎
  • 2010‎

The human brain is a highly complex organ with remarkable energy demands. Although it represents only 2% of the total body weight, it accounts for 20% of all oxygen consumption, reflecting its high rate of metabolic activity. Mitochondria have a crucial role in the supply of energy to the brain. Consequently, their deterioration can have important detrimental consequences on the function and plasticity of neurons, and is thought to have a pivotal role in ageing and in the pathogenesis of several neurological disorders. Owing to their inherent physiological functions, mitochondria are subjected to particularly high levels of stress and have evolved specific molecular quality-control mechanisms to maintain the mitochondrial components. Here, we review some of the most recent advances in the understanding of mitochondrial stress-control pathways, with a particular focus on how defects in such pathways might contribute to neurodegenerative disease.


Arachidonic acid mediates the formation of abundant alpha-helical multimers of alpha-synuclein.

  • Marija Iljina‎ et al.
  • Scientific reports‎
  • 2016‎

The protein alpha-synuclein (αS) self-assembles into toxic beta-sheet aggregates in Parkinson's disease, while it is proposed that αS forms soluble alpha-helical multimers in healthy neurons. Here, we have made αS multimers in vitro using arachidonic acid (ARA), one of the most abundant fatty acids in the brain, and characterized them by a combination of bulk experiments and single-molecule Fӧrster resonance energy transfer (sm-FRET) measurements. The data suggest that ARA-induced oligomers are alpha-helical, resistant to fibril formation, more prone to disaggregation, enzymatic digestion and degradation by the 26S proteasome, and lead to lower neuronal damage and reduced activation of microglia compared to the oligomers formed in the absence of ARA. These multimers can be formed at physiologically-relevant concentrations, and pathological mutants of αS form less multimers than wild-type αS. Our work provides strong biophysical evidence for the formation of alpha-helical multimers of αS in the presence of a biologically relevant fatty acid, which may have a protective role with respect to the generation of beta-sheet toxic structures during αS fibrillation.


A single cell high content assay detects mitochondrial dysfunction in iPSC-derived neurons with mutations in SNCA.

  • Daniel Little‎ et al.
  • Scientific reports‎
  • 2018‎

Mitochondrial dysfunction is implicated in many neurodegenerative diseases including Parkinson's disease (PD). Induced pluripotent stem cells (iPSCs) provide a unique cell model for studying neurological diseases. We have established a high-content assay that can simultaneously measure mitochondrial function, morphology and cell viability in iPSC-derived dopaminergic neurons. iPSCs from PD patients with mutations in SNCA and unaffected controls were differentiated into dopaminergic neurons, seeded in 384-well plates and stained with the mitochondrial membrane potential dependent dye TMRM, alongside Hoechst-33342 and Calcein-AM. Images were acquired using an automated confocal screening microscope and single cells were analysed using automated image analysis software. PD neurons displayed reduced mitochondrial membrane potential and altered mitochondrial morphology compared to control neurons. This assay demonstrates that high content screening techniques can be applied to the analysis of mitochondria in iPSC-derived neurons. This technique could form part of a drug discovery platform to test potential new therapeutics for PD and other neurodegenerative diseases.


LRRK2 deficiency induced mitochondrial Ca2+ efflux inhibition can be rescued by Na+/Ca2+/Li+ exchanger upregulation.

  • Marthe H R Ludtmann‎ et al.
  • Cell death & disease‎
  • 2019‎

Variants of leucine-rich repeat kinase 2 (lrrk2) are associated with an increased risk in developing Parkinson's disease (PD). Mitochondrial dysfunction and specifically mitochondrial Ca2+ handling has been linked to the pathogenesis of PD. Here we describe for the second time a mitochondrial Ca2+ efflux deficiency in a model displaying alterations in a PD-associated risk protein. LRRK2 deletion, inhibition and mutations led to an impaired mitochondrial Ca2+ extrusion via Na+/Ca2+/Li+ exchanger (NCLX) which in turn lowered mitochondrial permeability transition pore (PTP) opening threshold and increased cell death. The mitochondrial membrane potential was found not to be the underlying cause for the Ca2+ extrusion deficiency. NCLX activity was rescued by a direct (phosphomimetic NCLX mutant) and indirect (protein kinase A) activation which in turn elevated the PTP opening threshold. Therefore, at least two PD-associated risk protein pathways appear to converge on NCLX controlling mitochondrial Ca2+ extrusion and therefore mitochondrial health. Since mitochondrial Ca2+ overload has been described in many neurological disorders this study warrants further studies into NCLX as a potential therapeutic target.


Enhancing folic acid metabolism suppresses defects associated with loss of Drosophila mitofusin.

  • Juan Garrido-Maraver‎ et al.
  • Cell death & disease‎
  • 2019‎

Mutations in the mitochondrial GTPase mitofusin 2 (MFN2) cause Charcot-Marie-Tooth disease type 2 (CMT2A), a form of peripheral neuropathy that compromises axonal function. Mitofusins promote mitochondrial fusion and regulate mitochondrial dynamics. They are also reported to be involved in forming contacts between mitochondria and the endoplasmic reticulum. The fruit fly, Drosophila melanogaster, is a powerful tool to model human neurodegenerative diseases, including CMT2A. Here, we have downregulated the expression of the Drosophila mitofusin (dMfn RNAi) in adult flies and showed that this activates mitochondrial retrograde signalling and is associated with an upregulation of genes involved in folic acid (FA) metabolism. Additionally, we demonstrated that pharmacological and genetic interventions designed to increase the FA metabolism pathway suppresses the phenotype of the dMfn RNAi flies. We conclude that strategies to increase FA metabolism may ameliorate diseases, such as peripheral neuropathies, that are associated with loss of mitochondrial function. A video abstract for this article is available at  https://youtu.be/fs1G-QRo6xI .


Inhibiting the Ca2+ Influx Induced by Human CSF.

  • Anna Drews‎ et al.
  • Cell reports‎
  • 2017‎

One potential therapeutic strategy for Alzheimer's disease (AD) is to use antibodies that bind to small soluble protein aggregates to reduce their toxic effects. However, these therapies are rarely tested in human CSF before clinical trials because of the lack of sensitive methods that enable the measurement of aggregate-induced toxicity at low concentrations. We have developed highly sensitive single vesicle and single-cell-based assays that detect the Ca2+ influx caused by the CSF of individuals affected with AD and healthy controls, and we have found comparable effects for both types of samples. We also show that an extracellular chaperone clusterin; a nanobody specific to the amyloid-β peptide (Aβ); and bapineuzumab, a humanized monoclonal antibody raised against Aβ, could all reduce the Ca2+ influx caused by synthetic Aβ oligomers but are less effective in CSF. These assays could be used to characterize potential therapeutic agents in CSF before clinical trials.


Molecular motion regulates the activity of the Mitochondrial Serine Protease HtrA2.

  • Matthew Merski‎ et al.
  • Cell death & disease‎
  • 2017‎

HtrA2 (high-temperature requirement 2) is a human mitochondrial protease that has a role in apoptosis and Parkinson's disease. The structure of HtrA2 with an intact catalytic triad was determined, revealing a conformational change in the active site loops, involving mainly the regulatory LD loop, which resulted in burial of the catalytic serine relative to the previously reported structure of the proteolytically inactive mutant. Mutations in the loops surrounding the active site that significantly restricted their mobility, reduced proteolytic activity both in vitro and in cells, suggesting that regulation of HtrA2 activity cannot be explained by a simple transition to an activated conformational state with enhanced active site accessibility. Manipulation of solvent viscosity highlighted an unusual bi-phasic behavior of the enzymatic activity, which together with MD calculations supports the importance of motion in the regulation of the activity of HtrA2. HtrA2 is an unusually thermostable enzyme (TM=97.3 °C), a trait often associated with structural rigidity, not dynamic motion. We suggest that this thermostability functions to provide a stable scaffold for the observed loop motions, allowing them a relatively free conformational search within a rather restricted volume.


Pathological structural conversion of α-synuclein at the mitochondria induces neuronal toxicity.

  • Minee L Choi‎ et al.
  • Nature neuroscience‎
  • 2022‎

Aggregation of alpha-synuclein (α-Syn) drives Parkinson's disease (PD), although the initial stages of self-assembly and structural conversion have not been directly observed inside neurons. In this study, we tracked the intracellular conformational states of α-Syn using a single-molecule Förster resonance energy transfer (smFRET) biosensor, and we show here that α-Syn converts from a monomeric state into two distinct oligomeric states in neurons in a concentration-dependent and sequence-specific manner. Three-dimensional FRET-correlative light and electron microscopy (FRET-CLEM) revealed that intracellular seeding events occur preferentially on membrane surfaces, especially at mitochondrial membranes. The mitochondrial lipid cardiolipin triggers rapid oligomerization of A53T α-Syn, and cardiolipin is sequestered within aggregating lipid-protein complexes. Mitochondrial aggregates impair complex I activity and increase mitochondrial reactive oxygen species (ROS) generation, which accelerates the oligomerization of A53T α-Syn and causes permeabilization of mitochondrial membranes and cell death. These processes were also observed in induced pluripotent stem cell (iPSC)-derived neurons harboring A53T mutations from patients with PD. Our study highlights a mechanism of de novo α-Syn oligomerization at mitochondrial membranes and subsequent neuronal toxicity.


Functional antibody and T-cell immunity following SARS-CoV-2 infection, including by variants of concern, in patients with cancer: the CAPTURE study.

  • Annika Fendler‎ et al.
  • Research square‎
  • 2021‎

Patients with cancer have higher COVID-19 morbidity and mortality. Here we present the prospective CAPTURE study (NCT03226886) integrating longitudinal immune profiling with clinical annotation. Of 357 patients with cancer, 118 were SARS-CoV-2-positive, 94 were symptomatic and 2 patients died of COVID-19. In this cohort, 83% patients had S1-reactive antibodies, 82% had neutralizing antibodies against WT, whereas neutralizing antibody titers (NAbT) against the Alpha, Beta, and Delta variants were substantially reduced. Whereas S1-reactive antibody levels decreased in 13% of patients, NAbT remained stable up to 329 days. Patients also had detectable SARS-CoV-2-specific T cells and CD4+ responses correlating with S1-reactive antibody levels, although patients with hematological malignancies had impaired immune responses that were disease and treatment-specific, but presented compensatory cellular responses, further supported by clinical. Overall, these findings advance the understanding of the nature and duration of immune response to SARS-CoV-2 in patients with cancer.


Upregulation of Tribbles decreases body weight and increases sleep duration.

  • Rebeka Popovic‎ et al.
  • Disease models & mechanisms‎
  • 2023‎

Eukaryotic Tribbles proteins are pseudoenzymes that regulate multiple aspects of intracellular signalling. Both Drosophila melanogaster and mammalian members of this family of pseudokinases act as negative regulators of insulin signalling. Mammalian tribbles pseudokinase (TRIB) genes have also been linked to insulin resistance and type 2 diabetes mellitus. Type 2 diabetes mellitus is associated with increased body weight, sleep problems and increased long-term mortality. Here, we investigated how manipulating the expression of Tribbles impacts body weight, sleep and mortality. We showed that the overexpression of Drosophila tribbles (trbl) in the fly fat body reduces both body weight and lifespan in adult flies without affecting food intake. Furthermore, it decreases the levels of Drosophila insulin-like peptide 2 (DILP2; ILP2) and increases night-time sleep. The three genes encoding TRIBs of mammals, TRIB1, TRIB2 and TRIB3, show both common and unique features. As the three human TRIB genes share features with Drosophila trbl, we further explored the links between TRIB genetic variants and both body weight and sleep in the human population. We identified associations between the polymorphisms and expression levels of the pseudokinases and markers of body weight and sleep duration. We conclude that Tribbles pseudokinases are involved in the control of body weight, lifespan and sleep.


Generation of TWO G51D SNCA missense mutation iPSC lines (CRICKi011-A, CRICKi012-A) from two individuals at risk of Parkinson's disease.

  • Liani G Devito‎ et al.
  • Stem cell research‎
  • 2023‎

Mutations or multiplications of the SNCA (Synuclein Alpha) gene cause rare autosomal dominant Parkinson's disease (PD). The SNCA G51D missense mutation is associated with a synucleinopathy that shares PD and multiple system atrophy (MSA) characteristics. We generated induced pluripotent stem cell (iPSC) lines from two individuals with SNCA G51D missense mutations at risk of PD. Dermal fibroblasts were reprogrammed to pluripotency using a non-integrating mRNA-based protocol. The resulting human iPSCs displayed normal morphology, expressed markers associated with pluripotency, and differentiated into the three germ layers. The iPSC lines could facilitate disease-modelling and therapy development studies for synucleinopathies.


Single-Molecule Imaging of Individual Amyloid Protein Aggregates in Human Biofluids.

  • Mathew H Horrocks‎ et al.
  • ACS chemical neuroscience‎
  • 2016‎

The misfolding and aggregation of proteins into amyloid fibrils characterizes many neurodegenerative disorders such as Parkinson's and Alzheimer's diseases. We report here a method, termed SAVE (single aggregate visualization by enhancement) imaging, for the ultrasensitive detection of individual amyloid fibrils and oligomers using single-molecule fluorescence microscopy. We demonstrate that this method is able to detect the presence of amyloid aggregates of α-synuclein, tau, and amyloid-β. In addition, we show that aggregates can also be identified in human cerebrospinal fluid (CSF). Significantly, we see a twofold increase in the average aggregate concentration in CSF from Parkinson's disease patients compared to age-matched controls. Taken together, we conclude that this method provides an opportunity to characterize the structural nature of amyloid aggregates in a key biofluid, and therefore has the potential to study disease progression in both animal models and humans to enhance our understanding of neurodegenerative disorders.


Alpha-Synuclein Oligomers Interact with Metal Ions to Induce Oxidative Stress and Neuronal Death in Parkinson's Disease.

  • Emma Deas‎ et al.
  • Antioxidants & redox signaling‎
  • 2016‎

Protein aggregation and oxidative stress are both key pathogenic processes in Parkinson's disease, although the mechanism by which misfolded proteins induce oxidative stress and neuronal death remains unknown. In this study, we describe how aggregation of alpha-synuclein (α-S) from its monomeric form to its soluble oligomeric state results in aberrant free radical production and neuronal toxicity.


Progressive Motor Neuron Pathology and the Role of Astrocytes in a Human Stem Cell Model of VCP-Related ALS.

  • Claire E Hall‎ et al.
  • Cell reports‎
  • 2017‎

Motor neurons (MNs) and astrocytes (ACs) are implicated in the pathogenesis of amyotrophic lateral sclerosis (ALS), but their interaction and the sequence of molecular events leading to MN death remain unresolved. Here, we optimized directed differentiation of induced pluripotent stem cells (iPSCs) into highly enriched (> 85%) functional populations of spinal cord MNs and ACs. We identify significantly increased cytoplasmic TDP-43 and ER stress as primary pathogenic events in patient-specific valosin-containing protein (VCP)-mutant MNs, with secondary mitochondrial dysfunction and oxidative stress. Cumulatively, these cellular stresses result in synaptic pathology and cell death in VCP-mutant MNs. We additionally identify a cell-autonomous VCP-mutant AC survival phenotype, which is not attributable to the same molecular pathology occurring in VCP-mutant MNs. Finally, through iterative co-culture experiments, we uncover non-cell-autonomous effects of VCP-mutant ACs on both control and mutant MNs. This work elucidates molecular events and cellular interplay that could guide future therapeutic strategies in ALS.


α-synuclein oligomers interact with ATP synthase and open the permeability transition pore in Parkinson's disease.

  • Marthe H R Ludtmann‎ et al.
  • Nature communications‎
  • 2018‎

Protein aggregation causes α-synuclein to switch from its physiological role to a pathological toxic gain of function. Under physiological conditions, monomeric α-synuclein improves ATP synthase efficiency. Here, we report that aggregation of monomers generates beta sheet-rich oligomers that localise to the mitochondria in close proximity to several mitochondrial proteins including ATP synthase. Oligomeric α-synuclein impairs complex I-dependent respiration. Oligomers induce selective oxidation of the ATP synthase beta subunit and mitochondrial lipid peroxidation. These oxidation events increase the probability of permeability transition pore (PTP) opening, triggering mitochondrial swelling, and ultimately cell death. Notably, inhibition of oligomer-induced oxidation prevents the pathological induction of PTP. Inducible pluripotent stem cells (iPSC)-derived neurons bearing SNCA triplication, generate α-synuclein aggregates that interact with the ATP synthase and induce PTP opening, leading to neuronal death. This study shows how the transition of α-synuclein from its monomeric to oligomeric structure alters its functional consequences in Parkinson's disease.


Tau acts as an independent genetic risk factor in pathologically proven PD.

  • Gavin Charlesworth‎ et al.
  • Neurobiology of aging‎
  • 2012‎

MAPT has been repeatedly linked with Parkinson's disease (PD) in association studies. Although tau deposition may be seen in PD, its relevance to the pathogenesis of the condition remains unclear. The presence of tau-positive inclusions is, however, the defining feature of progressive supranuclear palsy (PSP), which may often be clinically misdiagnosed as idiopathic PD. On a genetic level, variants in MAPT are the strongest risk factor for PSP. These facts raise the question whether the MAPT association in PD results from contamination with unrecognized cases of PSP. Using only neuropathologically proven PD, we show that the MAPT association remains and is independent of the PSP Association.


Monomeric Alpha-Synuclein Exerts a Physiological Role on Brain ATP Synthase.

  • Marthe H R Ludtmann‎ et al.
  • The Journal of neuroscience : the official journal of the Society for Neuroscience‎
  • 2016‎

Misfolded α-synuclein is a key factor in the pathogenesis of Parkinson's disease (PD). However, knowledge about a physiological role for the native, unfolded α-synuclein is limited. Using brains of mice lacking α-, β-, and γ-synuclein, we report that extracellular monomeric α-synuclein enters neurons and localizes to mitochondria, interacts with ATP synthase subunit α, and modulates ATP synthase function. Using a combination of biochemical, live-cell imaging and mitochondrial respiration analysis, we found that brain mitochondria of α-, β-, and γ-synuclein knock-out mice are uncoupled, as characterized by increased mitochondrial respiration and reduced mitochondrial membrane potential. Furthermore, synuclein deficiency results in reduced ATP synthase efficiency and lower ATP levels. Exogenous application of low unfolded α-synuclein concentrations is able to increase the ATP synthase activity that rescues the mitochondrial phenotypes observed in synuclein deficiency. Overall, the data suggest that α-synuclein is a previously unrecognized physiological regulator of mitochondrial bioenergetics through its ability to interact with ATP synthase and increase its efficiency. This may be of particular importance in times of stress or PD mutations leading to energy depletion and neuronal cell toxicity.


Combined Transcriptomic and Proteomic Analysis of Perk Toxicity Pathways.

  • Rebeka Popovic‎ et al.
  • International journal of molecular sciences‎
  • 2021‎

In Drosophila, endoplasmic reticulum (ER) stress activates the protein kinase R-like endoplasmic reticulum kinase (dPerk). dPerk can also be activated by defective mitochondria in fly models of Parkinson's disease caused by mutations in pink1 or parkin. The Perk branch of the unfolded protein response (UPR) has emerged as a major toxic process in neurodegenerative disorders causing a chronic reduction in vital proteins and neuronal death. In this study, we combined microarray analysis and quantitative proteomics analysis in adult flies overexpressing dPerk to investigate the relationship between the transcriptional and translational response to dPerk activation. We identified tribbles and Heat shock protein 22 as two novel Drosophila activating transcription factor 4 (dAtf4) regulated transcripts. Using a combined bioinformatics tool kit, we demonstrated that the activation of dPerk leads to translational repression of mitochondrial proteins associated with glutathione and nucleotide metabolism, calcium signalling and iron-sulphur cluster biosynthesis. Further efforts to enhance these translationally repressed dPerk targets might offer protection against Perk toxicity.


Mitochondrial ROS signalling requires uninterrupted electron flow and is lost during ageing in flies.

  • Charlotte Graham‎ et al.
  • GeroScience‎
  • 2022‎

Mitochondrial reactive oxygen species (mtROS) are cellular messengers essential for cellular homeostasis. In response to stress, reverse electron transport (RET) through respiratory complex I generates high levels of mtROS. Suppression of ROS production via RET (ROS-RET) reduces survival under stress, while activation of ROS-RET extends lifespan in basal conditions. Here, we demonstrate that ROS-RET signalling requires increased electron entry and uninterrupted electron flow through the electron transport chain (ETC). We find that in old fruit flies, ROS-RET is abolished when electron flux is decreased and that their mitochondria produce consistently high levels of mtROS. Finally, we demonstrate that in young flies, limiting electron exit, but not entry, from the ETC phenocopies mtROS generation observed in old individuals. Our results elucidate the mechanism by which ROS signalling is lost during ageing.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: