Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 7 papers out of 7 papers

BMI1 inhibits senescence and enhances the immunomodulatory properties of human mesenchymal stem cells via the direct suppression of MKP-1/DUSP1.

  • Jin Young Lee‎ et al.
  • Aging‎
  • 2016‎

For the application of mesenchymal stem cells (MSCs) as clinical therapeutics, the regulation of cellular aging is important to protect hMSCs from an age-associated decline in their function. In this study, we evaluated the effects of hypoxia on cellular senescence and the immunomodulatory abilities of hUCB-MSCs. Hypoxic-cultured hUCB-MSCs showed enhanced proliferation and had increased immunosuppressive effects on mitogen-induced mononuclear cell proliferation. We found that BMI1, a member of the polycomb repressive complex protein group, showed increased expression in hypoxic-cultured hUCB-MSCs, and the further knock-down of BMI1 in hypoxic cells induced decreased proliferative and immunomodulatory abilities in hUCB-MSCs, along with COX-2/PGE2 down-regulation. Furthermore, the expression of phosphorylated p38 MAP kinase increased in response to the over-expression of BMI1 in normoxic conditions, suggesting that BMI1 regulates the immunomodulatory properties of hUCB-MSCs via p38 MAP kinase-mediated COX-2 expression. More importantly, we identified BMI1 as a direct repressor of MAP kinase phosphatase-1 (MKP-1)/DUSP1, which suppresses p38 MAP kinase activity. In conclusion, our results demonstrate that BMI1 plays a key role in the regulation of the immunomodulatory properties of hUCB-MSCs, and we suggest that these findings might provide a strategy to enhance the functionality of hUCB-MSCs for use in therapeutic applications.


Direct Conversion of Human Umbilical Cord Blood into Induced Neural Stem Cells with SOX2 and HMGA2.

  • Jae-Jun Kim‎ et al.
  • International journal of stem cells‎
  • 2017‎

Recent advances have shown the direct reprogramming of mouse and human fibroblasts into induced neural stem cells (iNSCs) without passing through an intermediate pluripotent state. Thus, direct reprogramming strategy possibly provides a safe and homogeneous cellular platform. However, the applications of iNSCs for regenerative medicine are limited by the restricted availability of cell sources. Human umbilical cord blood (hUCB) cells hold great potential in that immunotyped hUCB units can be immediately obtained from public banks. Moreover, hUCB samples do not require invasive procedures during collection or an extensive culture period prior to reprogramming. We recently reported that somatic cells can be directly converted into iNSCs with high efficiency and a short turnaround time. Here, we describe the detailed method for the generation of iNSCs derived from hUCB (hUCB iNSCs) using the lineage-specific transcription factors SOX2 and HMGA2. The protocol for deriving iNSC-like colonies takes 1∼2 weeks and establishment of homogenous hUCB iNSCs takes additional 2 weeks. Established hUCB iNSCs are clonally expandable and multipotent producing neurons and glia. Our study provides an accessible method for generating hUCB iNSCs, contributing development of in vitro neuropathological model systems.


miR-543 and miR-590-3p regulate human mesenchymal stem cell aging via direct targeting of AIMP3/p18.

  • Seunghee Lee‎ et al.
  • Age (Dordrecht, Netherlands)‎
  • 2014‎

Previously, AIMP3 (aminoacyl-tRNAsynthetase-interacting multifunctional protein-3) was shown to be involved in the macromolecular tRNA synthetase complex or to act as a tumor suppressor. In this study, we report a novel role of AIMP3/p18 in the cellular aging of human mesenchymal stem cells (hMSCs). We found that AIMP3/p18 expression significantly increased in senescent hMSCs and in aged mouse bone marrow-derived MSCs (mBM-MSCs). AIMP3/p18 overexpression is sufficient to induce the cellular senescence phenotypes with compromised clonogenicity and adipogenic differentiation potential. To identify the upstream regulators of AIMP3/p18 during senescence, we screened for potential epigenetic regulators and for miRNAs. We found that the levels of miR-543 and miR-590-3p significantly decreased under senescence-inducing conditions, whereas the AIMP3/p18 protein levels increased. We demonstrate for the first time that miR-543 and miR-590-3p are able to decrease AIMP3/p18 expression levels through direct binding to the AIMP/p18 transcripts, which further compromised the induction of the senescence phenotype. Taken together, our data demonstrate that AIMP3/p18 regulates cellular aging in hMSCs possibly through miR-543 and miR-590-3p.


GATA4-dependent regulation of the secretory phenotype via MCP-1 underlies lamin A-mediated human mesenchymal stem cell aging.

  • Jin Young Lee‎ et al.
  • Experimental & molecular medicine‎
  • 2018‎

Defects in the nuclear lamina occur during physiological aging and as. result of premature aging disorders. Aging is also accompanied by an increase in transcription of genes encoding cytokines and chemokines,. phenomenon known as the senescence-associated secretory phenotype (SASP). Progerin and prelamin. trigger premature senescence and loss of function of human mesenchymal stem cells (hMSCs), but little is known about how defects in nuclear lamin. regulate SASP. Here, we show that both progerin overexpression and ZMPSTE24 depletion induce paracrine senescence, especially through the expression of monocyte chemoattractant protein-1 (MCP-1), in hMSCs. Importantly, we identified that GATA4 is. mediator regulating MCP-1 expression in response to prelamin. or progerin in hMSCs. Co-immunoprecipitation revealed that GATA4 expression is maintained due to impaired p62-mediated degradation in progerin-expressing hMSCs. Furthermore, depletion of GATA4 abrogated SASP-dependent senescence through suppression of NF-ĸB and MCP-1 in hMSCs with progerin or prelamin A. Thus, our findings indicate that abnormal lamin. proteins trigger paracrine senescence through. GATA4-dependent pathway in hMSCs. This molecular link between defective lamin. and GATA4 can provide insights into physiological aging and pathological aging disorders.


Generation of patient specific human neural stem cells from Niemann-Pick disease type C patient-derived fibroblasts.

  • Eun-Ah Sung‎ et al.
  • Oncotarget‎
  • 2017‎

Niemann-Pick disease type C (NPC) is a neurodegenerative and lysosomal lipid storage disorder, characterized by the abnormal accumulation of unesterified cholesterol and glycolipids, which is caused by mutations in the NPC1 genes. Here, we report the generation of human induced neural stem cells from NPC patient-derived fibroblasts (NPC-iNSCs) using only two reprogramming factors SOX2 and HMGA2 without going through the pluripotent state. NPC-iNSCs were stably expandable and differentiated into neurons, astrocytes, and oligodendrocytes. However, NPC-iNSCs displayed defects in self-renewal and neuronal differentiation accompanied by cholesterol accumulation, suggesting that NPC-iNSCs retain the main features of NPC. This study revealed that the cholesterol accumulation and the impairments in self-renewal and neuronal differentiation in NPC-iNSCs were significantly improved by valproic acid. Additionally, we demonstrated that the inhibition of cholesterol transportation by U18666A in WT-iNSCs mimicked the impaired self-renewal and neuronal differentiation of NPC-iNSCs, indicating that the regulation of cholesterol homeostasis is a crucial determinant for the neurodegenerative features of NPC. Taken together, these findings suggest that NPC-iNSCs can serve as an unlimited source of neural cells for pathological study or drug screening in a patient specific manner. Furthermore, this direct conversion technology might be extensively applicable for other human neurodegenerative diseases.


A p38 MAPK-mediated alteration of COX-2/PGE2 regulates immunomodulatory properties in human mesenchymal stem cell aging.

  • Kyung-Rok Yu‎ et al.
  • PloS one‎
  • 2014‎

Because human mesenchymal stem cells (hMSC) have profound immunomodulatory effects, many attempts have been made to use hMSCs in preclinical and clinical trials. For hMSCs to be used in therapy, a large population of hMSCs must be generated by in vitro expansion. However, the immunomodulatory changes following the in vitro expansion of hMSCs have not been elucidated. In this study, we evaluated the effect of replicative senescence on the immunomodulatory ability of hMSCs in vitro and in vivo. Late-passage hMSCs showed impaired suppressive effect on mitogen-induced mononuclear cell proliferation. Strikingly, late-passage hMSCs had a significantly compromised protective effect against mouse experimental colitis, which was confirmed by gross and histologic examination. Among the anti-inflammatory cytokines, the production of prostaglandin E2 (PGE2) and the expression of its primary enzyme, cyclooxygenase-2 (COX-2), were profoundly increased by pre-stimulation with interferon gamma (IFN-γ) and tumor necrosis factor alpha (TNF-α), and this response was significantly decreased with consecutive passages. We demonstrated that the impaired phosphorylation activity of p38 MAP kinase (p38 MAPK) in late-passage hMSCs led to a compromised immunomodulatory ability through the regulation of COX-2. In conclusion, our data indicate that the immunomodulatory ability of hMSCs gradually declines with consecutive passages via a p38-mediated alteration of COX-2 and PGE2 levels.


HMGA2 regulates the in vitro aging and proliferation of human umbilical cord blood-derived stromal cells through the mTOR/p70S6K signaling pathway.

  • Kyung-Rok Yu‎ et al.
  • Stem cell research‎
  • 2013‎

The human high-mobility group protein A2 (HMGA2) protein is an architectural transcription factor that transforms chromatin structure by binding to DNA. Recently, it has been reported that HMGA2 is highly expressed in fetal neural stem cells and has the capacity to promote stemness. However, there is currently no information available on the functional significance and molecular mechanisms of the cellular in vitro aging and proliferation of human umbilical cord blood-derived stromal cells (hUCBSCs). In the present study, we evaluated the direct effects of HMGA2 on the cellular aging and proliferation of hUCBSCs and investigated potential regulatory mechanisms responsible for the corresponding functions. We found that the overexpression of HMGA2 enhanced proliferation and reduced or even reversed the in vitro aging process of hUCBSCs. This effect was accompanied by the increased expression of cyclin E and CDC25A and the significantly decreased expression of cyclin-dependent kinase inhibitors. Furthermore, HMGA2 inhibition compromised cell proliferation and adipogenic differentiation in early-stage hUCBSCs. From the molecular/cellular functional analysis of microarray data, we found that HMGA2 overexpression induced a PI3K/Akt/mTOR/p70S6K cascade, which in turn suppressed the expression of p16(INK4A) and p21(CIP1/WAF1) in hUCBSCs. These results provide novel insights into the mechanism by which HMGA2 regulates the in vitro aging and proliferation of hUCBSCs.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: