Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 20 papers out of 22 papers

Developmental changes in the corpus callosum from infancy to early adulthood: a structural magnetic resonance imaging study.

  • Megumi M Tanaka-Arakawa‎ et al.
  • PloS one‎
  • 2015‎

Previous research has reported on the development trajectory of the corpus callosum morphology. However, there have been only a few studies that have included data on infants. The goal of the present study was to examine the morphology of the corpus callosum in healthy participants of both sexes, from infancy to early adulthood. We sought to characterize normal development of the corpus callosum and possible sex differences in development. We performed a morphometric magnetic resonance imaging (MRI) study of 114 healthy individuals, aged 1 month to 25 years old, measuring the size of the corpus callosum. The corpus callosum was segmented into seven subareas of the rostrum, genu, rostral body, anterior midbody, posterior midbody, isthmus and splenium. Locally weighted regression analysis (LOESS) indicated significant non-linear age-related changes regardless of sex, particularly during the first few years of life. After this increase, curve slopes gradually became flat during adolescence and adulthood in both sexes. Age of local maximum for each subarea of the corpus callosum differed across the sexes. Ratios of total corpus callosum and genu, posterior midbody, as well as splenium to the whole brain were significantly higher in females compared with males. The present results demonstrate that the developmental trajectory of the corpus callosum during early life in healthy individuals is non-linear and dynamic. This pattern resembles that found for the cerebral cortex, further suggesting that this period plays a very important role in neural and functional development. In addition, developmental trajectories and changes in growth do show some sex differences.


Cerebral Hemodynamics in Speech-Related Cortical Areas: Articulation Learning Involves the Inferior Frontal Gyrus, Ventral Sensory-Motor Cortex, and Parietal-Temporal Sylvian Area.

  • Naomi Nakamichi‎ et al.
  • Frontiers in neurology‎
  • 2018‎

Although motor training programs have been applied to childhood apraxia of speech (AOS), the neural mechanisms of articulation learning are not well understood. To this aim, we recorded cerebral hemodynamic activity in the left hemisphere of healthy subjects (n = 15) during articulation learning. We used near-infrared spectroscopy (NIRS) while articulated voices were recorded and analyzed using spectrograms. The study consisted of two experimental sessions (modified and control sessions) in which participants were asked to repeat the articulation of the syllables "i-chi-ni" with and without an occlusal splint. This splint was used to increase the vertical dimension of occlusion to mimic conditions of articulation disorder. There were more articulation errors in the modified session, but number of errors were decreased in the final half of the modified session; this suggests that articulation learning took place. The hemodynamic NIRS data revealed significant activation during articulation in the frontal, parietal, and temporal cortices. These areas are involved in phonological processing and articulation planning and execution, and included the following areas: (i) the ventral sensory-motor cortex (vSMC), including the Rolandic operculum, precentral gyrus, and postcentral gyrus, (ii) the dorsal sensory-motor cortex, including the precentral and postcentral gyri, (iii) the opercular part of the inferior frontal gyrus (IFGoperc), (iv) the temporal cortex, including the superior temporal gyrus, and (v) the inferior parietal lobe (IPL), including the supramarginal and angular gyri. The posterior Sylvian fissure at the parietal-temporal boundary (area Spt) was selectively activated in the modified session. Furthermore, hemodynamic activity in the IFGoperc and vSMC was increased in the final half of the modified session compared with its initial half, and negatively correlated with articulation errors during articulation learning in the modified session. The present results suggest an essential role of the frontal regions, including the IFGoperc and vSMC, in articulation learning, with sensory feedback through area Spt and the IPL. The present study provides clues to the underlying pathology and treatment of childhood apraxia of speech.


Combination of 5-aminosalicylic acid and hyperthermia synergistically enhances apoptotic cell death in HSC-3 cells due to intracellular nitric oxide/peroxynitrite generation.

  • Rohan Moniruzzaman‎ et al.
  • Cancer letters‎
  • 2019‎

The repurposing of existing FDA-approved non-cancer drugs is a potential source of new treatment options for cancer patients. An anti-inflammatory drug, 5-aminosalicylic acid (5-ASA), has been clinically used to treat inflammatory bowel disease. Hyperthermia (HT) is widely applicable addendum therapy with the existing cancer treatment modalities. Here, we addressed how 5-ASA combined with HT induces lethal effects in human oral squamous cell carcinoma (OSCC) HSC-3 cells. We found that 5-ASA/HT combination significantly inhibited the viability of HSC-3 cells, while cytotoxic effects in primary human dermal fibroblast cells were minor. Apoptotic endpoints were significantly increased by the 5-ASA/HT combined treatment, as evidenced by presence of Annexin V-FITC/PI positive cells, loss of MMP, Bcl-2/Bax ratio alteration, and increased Fas, cleaved Bid, and caspase expression. Interestingly, the enhancement of apoptosis was reversed in the presence of ON/ONOO- scavengers. These findings indicate that the combination treatment enhances apoptosis via ON/ONOO- mediated ER stress-Ca2+-mitochondria signaling and caspase-dependent apoptotic pathways. Our findings provide novel evidence that the combination of 5-ASA and HT is a promising approach for the enhancement of apoptosis; it may serve as an effective strategy for treating human OSCC.


Structural MRI Study of the Planum Temporale in Individuals With an At-Risk Mental State Using Labeled Cortical Distance Mapping.

  • Yoichiro Takayanagi‎ et al.
  • Frontiers in psychiatry‎
  • 2020‎

Background: Recent studies have demonstrated brain structural changes that predate or accompany the onset of frank psychosis, such as schizophrenia, among individuals with an at-risk mental state (ARMS). The planum temporale (PT) is a brain region involved in language processing. In schizophrenia patients, gray matter volume reduction and lack of normal asymmetry (left > right) of PT have repeatedly been reported. Some studies showed progressive gray matter reduction of PT in first-episode schizophrenia patients, and in ARMS subjects during their development of psychosis. Methods: MRI scans (1.5 T field strength) were obtained from 73 ARMS subjects and 74 gender- and age-matched healthy controls at three sites (University of Toyama, Toho University and Tohoku University). Participants with ARMS were clinically monitored for at least 2 years to confirm whether they subsequently developed frank psychosis. Cortical thickness, gray matter volume, and surface area of PT were estimated using FreeSurfer-initiated labeled cortical distance mapping (FSLCDM). PT measures were compared among healthy controls, ARMS subjects who later developed overt psychosis (ARMS-P), and those who did not (ARMS-NP). In each statistical model, age, sex, intracranial volume, and scanning sites were treated as nuisance covariates. Results: Of 73 ARMS subjects, 18 developed overt psychosis (12 schizophrenia and 6 other psychoses) within the follow-up period. There were no significant group differences of PT measures. In addition, significant asymmetries of PT volume and surface area (left > right) were found in all diagnostic groups. PT measures did not correlate with the neurocognitive performance of ARMS subjects. Discussion: Our results suggest that the previously-reported gray matter reduction and lack of normal anatomical asymmetry of PT in schizophrenia patients may not emerge during the prodromal stage of psychosis; taken together with previous longitudinal findings, such PT structural changes may occur just before or during the onset of psychosis.


Reduced cortical thickness of the paracentral lobule in at-risk mental state individuals with poor 1-year functional outcomes.

  • Daiki Sasabayashi‎ et al.
  • Translational psychiatry‎
  • 2021‎

Although widespread cortical thinning centered on the fronto-temporal regions in schizophrenia has been reported, the findings in at-risk mental state (ARMS) patients have been inconsistent. In addition, it remains unclear whether abnormalities of cortical thickness (CT) in ARMS individuals, if present, are related to their functional decline irrespective of future psychosis onset. In this multicenter study in Japan, T1-weighted magnetic resonance imaging was performed at baseline in 107 individuals with ARMS, who were subdivided into resilient (77, good functional outcome) and non-resilient (13, poor functional outcome) groups based on the change in Global Assessment of Functioning scores during 1-year follow-up, and 104 age- and sex-matched healthy controls recruited at four scanning sites. We measured the CT of the entire cortex and performed group comparisons using FreeSurfer software. The relationship between the CT and cognitive functioning was examined in an ARMS subsample (n = 70). ARMS individuals as a whole relative to healthy controls exhibited a significantly reduced CT, predominantly in the fronto-temporal regions, which was partly associated with cognitive impairments, and an increased CT in the left parietal and right occipital regions. Compared with resilient ARMS individuals, non-resilient ARMS individuals exhibited a significantly reduced CT of the right paracentral lobule. These findings suggest that ARMS individuals partly share CT abnormalities with patients with overt schizophrenia, potentially representing general vulnerability to psychopathology, and also support the role of cortical thinning in the paracentral lobule as a predictive biomarker for short-term functional decline in the ARMS population.


Longitudinal Changes in Brain Gyrification in Schizophrenia Spectrum Disorders.

  • Tien Viet Pham‎ et al.
  • Frontiers in aging neuroscience‎
  • 2021‎

Previous magnetic resonance imaging (MRI) studies reported increased brain gyrification in schizophrenia and schizotypal disorder, a prototypic disorder within the schizophrenia spectrum. This may reflect deviations in early neurodevelopment; however, it currently remains unclear whether the gyrification pattern longitudinally changes over the course of the schizophrenia spectrum. The present MRI study using FreeSurfer compared longitudinal changes (mean inter-scan interval of 2.7 years) in the local gyrification index (LGI) in the entire cortex among 23 patients with first-episode schizophrenia, 14 with schizotypal disorder, and 39 healthy controls. Significant differences were observed in longitudinal LGI changes between these groups; the schizophrenia group exhibited a progressive decline in LGI, predominantly in the fronto-temporal regions, whereas LGI increased over time in several brain regions in the schizotypal and control groups. In the schizophrenia group, a greater reduction in LGI over time in the right precentral and post central regions correlated with smaller improvements in negative symptoms during the follow-up period. The cumulative medication dosage during follow-up negatively correlated with a longitudinal LGI increase in the right superior parietal area in the schizotypal group, but did not affect longitudinal LGI changes in the schizophrenia group. Collectively, these results suggest that gyrification patterns in the schizophrenia spectrum reflect both early neurodevelopmental abnormalities as a vulnerability factor and active brain pathology in the early stages of schizophrenia.


The polymorphism of YWHAE, a gene encoding 14-3-3epsilon, and brain morphology in schizophrenia: a voxel-based morphometric study.

  • Mikio Kido‎ et al.
  • PloS one‎
  • 2014‎

YWHAE is a possible susceptibility gene for schizophrenia that encodes 14-3-3epsilon, a Disrupted-in-Schizophrenia 1 (DISC1)-interacting molecule, but the effect of variation in its genotype on brain morphology remains largely unknown.


3-O-trans-p-coumaroyl-alphitolic acid, a triterpenoid from Zizyphus jujuba, leads to apoptotic cell death in human leukemia cells through reactive oxygen species production and activation of the unfolded protein response.

  • Yohei Mitsuhashi‎ et al.
  • PloS one‎
  • 2017‎

3-O-trans-p-coumaroyl-alphitolic acid (3OTPCA), a triterpenoid isolated from the plant Zizyphus jujuba (ZJ), is known to be cytotoxic to cancer cells; however, the molecular mechanism underlying 3OTPCA-induced cell death remains unknown. Here, we provide novel evidence that 3OTPCA induces apoptotic cell death in human leukemia cells. We found that 3OPTCA induces DNA fragmentation within 24 h after treatment in U937 cells, which was also observed in other leukemia cell lines, including Molt-4 and Jurkat cells. We then investigated other parameters involved in apoptosis, including phosphatidylserine externalization and caspase-3 cleavage in U937 cells treated with 3OTPCA. 3OTPCA caused significant DNA fragmentation, annexin-V binding, and caspase-3 cleavage, indicating that 3OTPCA exerts cytotoxicity through apoptosis induction. RNA-seq analysis revealed that the expression of transcripts associated with the unfolded protein response (UPR), such as spliced XBP-1 and CHOP, were up-regulated by 3OTPCA treatment. 3OTPCA-induced UPR activation may be due to endoplasmic reticulum (ER) stress because both 3OTPCA and thapsigargin, an endoplasmic Ca2+ transport ATPase inhibitor, increased intracellular calcium levels. 3OTPCA down-regulated the expression of Bcl-2, a target of CHOP, and led to the loss of the mitochondrial membrane, indicating that the intrinsic (mitochondrial) apoptotic pathway was triggered by 3OTPCA, likely through UPR activation. Furthermore, we found that 3OTPCA induced superoxide anion generation and, following p38 MAPK phosphorylation, caspase-8 cleavage without affecting Fas expression. It also induced subsequent Bid cleavage, which may enhance the apoptosis triggered by the intrinsic pathway. These findings reveal for the first time that 3OTPCA induces apoptotic cell death through the generation of reactive oxygen species and activation of UPR.


Mini-microform cleft lip with complete cleft alveolus and palate: A case report.

  • Kumiko Fujiwara‎ et al.
  • Congenital anomalies‎
  • 2021‎

Cleft lip and cleft alveolus are caused by incomplete fusion of the frontonasal and maxillary prominences. However, milder forms of cleft lip are rarely accompanied by cleft alveolus. Here, we report a rare case of mini-microform cleft lip with complete cleft alveolus and cleft palate. No findings suggestive of cleft lip were evident on initial examination. However, three-dimensional facial measurements confirmed the presence of cleft lip despite no evidence of orbicularis oris muscle (OOM) rupture on ultrasonography. Collapsed nostril, as observed in this case, is usually associated with OOM rupture. However, it can also be caused by skeletal abnormalities, such as cleft alveolus. Three-dimensional facial measurements and ultrasonography can assist in accurate diagnosis when visual examination is ambiguous.


Reduced Hippocampal Subfield Volume in Schizophrenia and Clinical High-Risk State for Psychosis.

  • Daiki Sasabayashi‎ et al.
  • Frontiers in psychiatry‎
  • 2021‎

Magnetic resonance imaging (MRI) studies in schizophrenia demonstrated volume reduction in hippocampal subfields divided on the basis of specific cytoarchitecture and function. However, it remains unclear whether this abnormality exists prior to the onset of psychosis and differs across illness stages. MRI (3 T) scans were obtained from 77 patients with schizophrenia, including 24 recent-onset and 40 chronic patients, 51 individuals with an at-risk mental state (ARMS) (of whom 5 subsequently developed psychosis within the follow-up period), and 87 healthy controls. Using FreeSurfer software, hippocampal subfield volumes were measured and compared across the groups. Both schizophrenia and ARMS groups exhibited significantly smaller volumes for the bilateral Cornu Ammonis 1 area, left hippocampal tail, and right molecular layer of the hippocampus than the healthy control group. Within the schizophrenia group, chronic patients exhibited a significantly smaller volume for the left hippocampal tail than recent-onset patients. The left hippocampal tail volume was positively correlated with onset age, and negatively correlated with duration of psychosis and duration of medication in the schizophrenia group. Reduced hippocampal subfield volumes observed in both schizophrenia and ARMS groups may represent a common biotype associated with psychosis vulnerability. Volumetric changes of the left hippocampal tail may also suggest ongoing atrophy after the onset of schizophrenia.


Developmental trajectories of amygdala and hippocampus from infancy to early adulthood in healthy individuals.

  • Akiko Uematsu‎ et al.
  • PloS one‎
  • 2012‎

Knowledge of amygdalar and hippocampal development as they pertain to sex differences and laterality would help to understand not only brain development but also the relationship between brain volume and brain functions. However, few studies investigated development of these two regions, especially during infancy. The purpose of this study was to examine typical volumetric trajectories of amygdala and hippocampus from infancy to early adulthood by predicting sexual dimorphism and laterality. We performed a cross-sectional morphometric MRI study of amygdalar and hippocampal growth from 1 month to 25 years old, using 109 healthy individuals. The findings indicated significant non-linear age-related volume changes, especially during the first few years of life, in both the amygdala and hippocampus regardless of sex. The peak ages of amygdalar and hippocampal volumes came at the timing of preadolescence (9-11 years old). The female amygdala reached its peak age about one year and a half earlier than the male amygdala did. In addition, its rate of growth change decreased earlier in the females. Furthermore, both females and males displayed rightward laterality in the hippocampus, but only the males in the amygdala. The robust growth of the amygdala and hippocampus during infancy highlight the importance of this period for neural and functional development. The sex differences and laterality during development of these two regions suggest that sex-related factors such as sex hormones and functional laterality might affect brain development.


The Disrupted-in-Schizophrenia-1 Ser704Cys polymorphism and brain neurodevelopmental markers in schizophrenia and healthy subjects.

  • Tsutomu Takahashi‎ et al.
  • Progress in neuro-psychopharmacology & biological psychiatry‎
  • 2015‎

Increasing evidence has implicated the role of Disrupted-in-Schizophrenia-1 (DISC1), a potential susceptibility gene for schizophrenia, in early neurodevelopmental processes. However, the effect of its genotype variation on brain morphologic changes related to neurodevelopmental abnormalities in schizophrenia remains largely unknown. This magnetic resonance imaging study examined the association between DISC1 Ser704Cys polymorphism and a range of brain neurodevelopmental markers [cavum septi pellucidi (CSP), adhesio interthalamica (AI), olfactory sulcus depth, and sulcogyral pattern (Types I, II, III, and IV) in the orbitofrontal cortex (OFC)] in an all Japanese sample of 75 schizophrenia patients and 87 healthy controls. The Cys carriers had significantly larger CSP than the Ser homozygotes for both schizophrenia patients and healthy controls. The Cys carriers also exhibited a reduction in the Type I pattern of the right OFC in the healthy controls, but not in the schizophrenia patients. The DISC1 Ser704Cys polymorphism did not affect the AI and olfactory sulcus depth in either group. These results suggested a possible role of the DISC1 genotype in the early neurodevelopment of human brains, but failed to show its specific role in the neurodevelopmental pathology of schizophrenia.


DPP8 is a novel therapeutic target for multiple myeloma.

  • Tsutomu Sato‎ et al.
  • Scientific reports‎
  • 2019‎

Dipeptidyl peptidases (DPPs) are proteolytic enzymes that are ideal therapeutic targets in human diseases. Indeed, DPP4 inhibitors are widely used in clinical practice as anti-diabetic agents. In this paper, we show that DPP4 inhibitors also induced cell death in multiple human myeloma cells. Among five DPP4 inhibitors, only two of them, vildagliptin and saxagliptin, exhibited apparent cytotoxic effects on myeloma cell lines, without any difference in suppression of DPP4 activity. As these two DPP4 inhibitors are known to have off-target effects against DPP8/9, we employed the specific DPP8/9 inhibitor 1G244. 1G244 demonstrated anti-myeloma effects on several cell lines and CD138+ cells from patients as well as in murine xenograft model. Through siRNA silencing approach, we further confirmed that DPP8 but not DPP9 is a key molecule in inducing cell death induced by DPP8/9 inhibition. In fact, the expression of DPP8 in CD38+ cells from myeloma patients was higher than that of healthy volunteers. DPP8/9 inhibition induced apoptosis, as evidenced by activated form of PARP, caspases-3 and was suppressed by the pan-caspase inhibitor Z-VAD-FMK. Taken together, these results indicate that DPP8 is a novel therapeutic target for myeloma treatment.


Skeletal muscle releases extracellular vesicles with distinct protein and microRNA signatures that function in the muscle microenvironment.

  • Sho Watanabe‎ et al.
  • PNAS nexus‎
  • 2022‎

Extracellular vesicles (EVs) contain various regulatory molecules and mediate intercellular communications. Although EVs are secreted from various cell types, including skeletal muscle cells, and are present in the blood, their identity is poorly characterized in vivo, limiting the identification of their origin in the blood. Since skeletal muscle is the largest organ in the body, it could substantially contribute to circulating EVs as their source. However, due to the lack of defined markers that distinguish skeletal muscle-derived EVs (SkM-EVs) from others, whether skeletal muscle releases EVs in vivo and how much SkM-EVs account for plasma EVs remain poorly understood. In this work, we perform quantitative proteomic analyses on EVs released from C2C12 cells and human iPS cell-derived myocytes and identify potential marker proteins that mark SkM-EVs. These markers we identified apply to in vivo tracking of SkM-EVs. The results show that skeletal muscle makes only a subtle contribution to plasma EVs as their source in both control and exercise conditions in mice. On the other hand, we demonstrate that SkM-EVs are concentrated in the skeletal muscle interstitium. Furthermore, we show that interstitium EVs are highly enriched with the muscle-specific miRNAs and repress the expression of the paired box transcription factor Pax7, a master regulator for myogenesis. Taken together, our findings confirm previous studies showing that skeletal muscle cells release exosome-like EVs with specific protein and miRNA profiles in vivo and suggest that SkM-EVs mainly play a role within the muscle microenvironment where they accumulate.


Roles of intracellular and extracellular ROS formation in apoptosis induced by cold atmospheric helium plasma and X-irradiation in the presence of sulfasalazine.

  • Rohan Moniruzzaman‎ et al.
  • Free radical biology & medicine‎
  • 2018‎

Sulfasalazine (SSZ) is a well-known anti-inflammatory drug and also an inhibitor of the cystine-glutamate antiporter that is known to reduce intracellular glutathione (GSH) level and increase cellular oxidative stress, indicating its anti-tumor potential. However, the combination of SSZ with other physical modalities remains unexplored. Here, the effects of SSZ on cold atmospheric helium plasma (He-CAP), which produces approximately 24 x higher concentration of hydroxyl radicals (. OH) compared to X-irradiation (IR) in aqueous solution, and on IR-induced apoptosis in human leukemia Molt-4 cells were studied to elucidate the mechanism of apoptosis enhancement. Both the Annexin V-FITC/PI and DNA fragmentation assay revealed that pre-treatment of cells with SSZ significantly enhanced He-CAP and IR-induced apoptosis. Similar enhancement was observed during the loss of mitochondrial membrane potential, intracellular Ca2+ ions, and mitochondria- and endoplasmic reticulum-related proteins. The concentration of intracellular reactive oxygen species (ROS) was much higher in He-CAP treated cells than in X-irradiated cells. On the other hand, strong enhancement of Fas expression and caspase-8 and -3 activities were only observed in X-irradiated cells. It might be possible that the higher concentration of intracellular and extracellular ROS suppressed caspase activities and Fas expression in He-CAP-treated cells. Notably, pretreating the cells with an antioxidant N-acetyl-L-cysteine (NAC) dramatically decreased apoptosis in cells treated by He-CAP, but not by IR. These results suggest that IR-induced apoptosis is due to specific and effective ROS distribution since intracellular ROS formation is marginal and the high production of ROS inside and outside of cells plays unique roles in He-CAP induced apoptosis. We conclude that our data provides efficacy and mechanistic insights for SSZ, which might be helpful for establishing SSZ as a future sensitizer in He-CAP or IR therapy for cancer.


Lactic acid bacteria-derived γ-linolenic acid metabolites are PPARδ ligands that reduce lipid accumulation in human intestinal organoids.

  • Makoto Noguchi‎ et al.
  • The Journal of biological chemistry‎
  • 2022‎

Gut microbiota regulate physiological functions in various hosts, such as energy metabolism and immunity. Lactic acid bacteria, including Lactobacillus plantarum, have a specific polyunsaturated fatty acid saturation metabolism that generates multiple fatty acid species, such as hydroxy fatty acids, oxo fatty acids, conjugated fatty acids, and trans-fatty acids. How these bacterial metabolites impact host physiology is not fully understood. Here, we investigated the ligand activity of lactic acid bacteria-produced fatty acids in relation to nuclear hormone receptors expressed in the small intestine. Our reporter assays revealed two bacterial metabolites of γ-linolenic acid (GLA), 13-hydroxy-cis-6,cis-9-octadecadienoic acid (γHYD), and 13-oxo-cis-6,cis-9-octadecadienoic acid (γKetoD) activated peroxisome proliferator-activated receptor delta (PPARδ) more potently than GLA. We demonstrate that both γHYD and γKetoD bound directly to the ligand-binding domain of human PPARδ. A docking simulation indicated that four polar residues (T289, H323, H449, and Y473) of PPARδ donate hydrogen bonds to these fatty acids. Interestingly, T289 does not donate a hydrogen bond to GLA, suggesting that bacterial modification of GLA introducing hydroxy and oxo group determines ligand selectivity. In human intestinal organoids, we determined γHYD and γKetoD increased the expression of PPARδ target genes, enhanced fatty acid β-oxidation, and reduced intracellular triglyceride accumulation. These findings suggest that γHYD and γKetoD, which gut lactic acid bacteria could generate, are naturally occurring PPARδ ligands in the intestinal tract and may improve lipid metabolism in the human intestine.


Dominant CT Patterns and Immune Responses during the Early Infection Phases of Different SARS-CoV-2 Variants.

  • Kentaro Nagaoka‎ et al.
  • Viruses‎
  • 2023‎

Ground-glass opacity (GGO) and organizing pneumonia (OP) are dominant pulmonary CT lesions associated with COVID-19. However, the role of different immune responses in these CT patterns remains unclear, particularly following the emergence of the Omicron variant. In this prospective observational study, we recruited patients hospitalized with COVID-19, before and after the emergence of Omicron variants. Semi-quantitative CT scores and dominant CT patterns were retrospectively determined for all patients within five days of symptom onset. Serum levels of IFN-α, IL-6, CXCL10, and VEGF were assessed using ELISA. Serum-neutralizing activity was measured using a pseudovirus assay. We enrolled 48 patients with Omicron variants and 137 with precedent variants. While the frequency of GGO patterns was similar between the two groups, the OP pattern was significantly more frequent in patients with precedent variants. In patients with precedent variants, IFN-α and CXCL10 levels were strongly correlated with GGO, whereas neutralizing activity and VEGF were correlated with OP. The correlation between IFN-α levels and CT scores was lower in patients with Omicron than in those with precedent variants. Compared to preceding variants, infection with the Omicron variant is characterized by a less frequent OP pattern and a weaker correlation between serum IFN-α and CT scores.


Organoid-derived intestinal epithelial cells are a suitable model for preclinical toxicology and pharmacokinetic studies.

  • Yu Takahashi‎ et al.
  • iScience‎
  • 2022‎

Intestinal organoids are physiologically relevant tools used for cellular models. However, the suitability of organoids to examine biological functions over existing established cell lines lacks sufficient evidence. Cytochrome P450 3A4 (CYP3A4) induction by pregnane X receptor ligands, glucose uptake via sodium/glucose cotransporter 1, and microsomal triglyceride transfer protein-dependent ApoB-48 secretion, which are critical for human intestinal metabolism, were observed in organoid-derived two-dimensional cells but little in Caco-2 cells. CYP3A4 induction evaluation involved a simplified method of establishing organoids that constitutively expressed a reporter gene. Compound screening identified several anticancer drugs with selective activities toward Caco-2 cells, highlighting their characteristics as cancer cells. Another compound screening revealed a decline in N-(4-hydroxyphenyl)retinamide cytotoxicity upon rifampicin treatment in organoid-derived cells, under CYP3A4-induced conditions. This study shows that organoid-derived intestinal epithelial cells (IECs) possess similar physiological properties as intestinal epithelium and can serve as tools for enhancing the prediction of biological activity in humans.


Increased Occipital Gyrification and Development of Psychotic Disorders in Individuals With an At-Risk Mental State: A Multicenter Study.

  • Daiki Sasabayashi‎ et al.
  • Biological psychiatry‎
  • 2017‎

Anomalies of brain gyrification have been reported in schizophrenia, possibly reflecting its neurodevelopmental pathology. However, it remains elusive whether individuals at risk for psychotic disorders exhibit deviated gyrification patterns, and whether such findings, if present, are predictive of transition to psychotic disorders.


Cold atmospheric helium plasma causes synergistic enhancement in cell death with hyperthermia and an additive enhancement with radiation.

  • Rohan Moniruzzaman‎ et al.
  • Scientific reports‎
  • 2017‎

Cold atmospheric plasmas (CAPs) have been proposed as a novel therapeutic method for its anti-cancer potential. However, its biological effects in combination with other physical modalities remain elusive. Therefore, this study examined the effects of cold atmospheric helium plasma (He-CAP) in combination with hyperthermia (HT) 42 °C or radiation 5 Gy. Synergistic enhancement in the cell death with HT and an additive enhancement with radiation were observed following He-CAP treatment. The synergistic effects were accompanied by increased intracellular reactive oxygen species (ROS) production. Hydrogen peroxide (H2O2) and superoxide (O2•-) generation was increased immediately after He-CAP treatment, but fails to initiate cell death process. Interestingly, at late hour's He-CAP-induced O2•- generation subsides, however the combined treatment showed sustained increased intracellular O2•- level, and enhanced cell death than either treatment alone. He-CAP caused marked induction of ROS in the aqueous medium, but He-CAP-induced ROS seems insufficient or not completely incorporated intra-cellularly to activate cell death machinery. The observed synergistic effects were due to the HT effects on membrane fluidity which facilitate the incorporation of He-CAP-induced ROS into the cells, thus results in the enhanced cancer cell death following combined treatment. These findings would be helpful when establishing a therapeutic strategy for CAP in combination with HT or radiation.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: