Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 20 papers out of 55 papers

Global transcriptional profiling using RNA sequencing and DNA methylation patterns in highly enriched mesenchymal cells from young versus elderly women.

  • Matthew M Roforth‎ et al.
  • Bone‎
  • 2015‎

Age-related bone loss in humans is associated with a decrease in bone formation relative to bone resorption, although the mechanisms for this impairment in bone formation with aging are not well understood. It is known that the precursors for the bone-forming osteoblasts reside in the mesenchymal cell population in bone marrow. Thus, in an effort to identify relevant genetic pathways that are altered with aging, we examined the gene expression and DNA methylation patterns from a highly enriched bone marrow mesenchymal cell population from young (mean age, 28.7 years) versus old (mean age, 73.3 years) women. Bone marrow mononuclear cells from these women were depleted of hematopoietic lineage (lin) and endothelial cells using a combination of magnetic- and fluorescence-activated cell sorting, yielding a previously characterized mesenchymal cell population (lin-/CD34-/CD31- cells) that is capable of osteoblast differentiation. Whole transcriptome RNA sequencing (RNAseq) of freshly isolated cells (without in vitro culture) identified 279 differentially expressed genes (p < 0.05, false discovery rate [q]< 0.10) between the young and old subjects. Pathway analysis revealed statistically significant (all p < 0.05) alterations in protein synthesis and degradation pathways, as well as mTOR, gap junction, calcium, melatonin and NFAT signaling pathways. Further, Reduced Representational Bisulphite sequencing (RRBS DNA methylation sequencing) revealed significant differences in methylation between the young and old subjects surrounding the promoters of 1528 target genes that also exhibited significant differences in gene expression by RNAseq. In summary, these studies provide novel insights into potential pathways affected by aging in a highly enriched human mesenchymal cell population analyzed without the confounding effects of in vitro culture. Specifically, our finding of alterations in several genes and pathways leading to impaired protein synthesis and turnover with aging in bone marrow mesenchymal cells points to the need for further studies examining how these changes, as well as the other alterations with aging that we identified, may contribute to the age-related impairment in osteoblast formation and/or function.


Effects of Age and Estrogen on Skeletal Gene Expression in Humans as Assessed by RNA Sequencing.

  • Joshua N Farr‎ et al.
  • PloS one‎
  • 2015‎

Precise delineation of the specific genes and pathways altered with aging and estrogen (E) therapy may lead to new skeletal biomarkers and the development of novel bone therapeutics. Previous human bone studies, however, have been limited by only examining pre-specified genes and pathways. High-throughput RNA sequencing (RNAseq), on the other hand, offers an unbiased approach to examine the entire transcriptome. Here we present an RNAseq analysis of human bone samples, obtained from iliac crest needle biopsies, to yield the first in vivo interrogation of all genes and pathways that may be altered in bone with aging and E therapy in humans. 58 healthy women were studied, including 19 young women (mean age ± SD, 30.3 ± 5.4 years), 19 old women (73.1 ± 6.6 years), and 20 old women treated with 3 weeks of E therapy (70.5 ± 5.2 years). Using generally accepted criteria (false discovery rate [q] < 0.10), aging altered a total of 678 genes and 12 pathways, including a subset known to regulate bone metabolism (e.g., Notch). Interestingly, the LEF1 transcription factor, which is a classical downstream target of the Wnt/β-catenin signaling pathway, was significantly downregulated in the bones from the old versus young women; consistent with this, LEF1 binding sites were significantly enriched in the promoter regions of the differentially expressed genes in the old versus young women, suggesting that aging was associated with alterations in Wnt signaling in bone. Further, of the 21 unique genes altered in bone by E therapy, the expression of INHBB (encoding for the inhibin, beta B polypeptide), which decreased with aging (by 0.6-fold), was restored to young adult levels in response to E therapy. In conclusion, our data demonstrate that aging alters a substantial portion of the skeletal transcriptome, whereas E therapy appears to have significant, albeit less wide-ranging effects. These data provide a valuable resource for the potential identification of novel biomarkers associated with age-related bone loss and also highlight potential pathways that could be targeted to treat osteoporosis.


Myostatin as a mediator of sarcopenia versus homeostatic regulator of muscle mass: insights using a new mass spectrometry-based assay.

  • H Robert Bergen‎ et al.
  • Skeletal muscle‎
  • 2015‎

Myostatin is a protein synthesized and secreted by skeletal muscle that negatively regulates muscle mass. The extent to which circulating myostatin levels change in the context of aging is controversial, largely due to methodological barriers.


Dissection of estrogen receptor alpha signaling pathways in osteoblasts using RNA-sequencing.

  • Matthew M Roforth‎ et al.
  • PloS one‎
  • 2014‎

The effects of 17-β-estradiol in osteoblasts are primarily mediated by the nuclear transcription factors, estrogen receptor (ER)α and ERβ. ERs function through three general modes of action: DNA-binding dependent through estrogen response elements (EREs; designated nuclear ERE signaling); nuclear signaling via protein-protein interactions to other transcription factors (nuclear non-ERE signaling); and extra-nuclear signaling (membrane-bound functions of ERs). Identification of the specific transcriptional signatures regulated by each of these modes of action should contribute to an enhanced understanding of estrogen signaling in osteoblasts. To achieve this goal, we utilized specific mutations of ERα that eliminate the ability of the receptor to signal through a specific mode of action. The non-classical ERα knock-in (NERKI) mutation is incapable of signaling through direct DNA binding to EREs and the nuclear only ERα (NOER) mutation eliminates all membrane-localized signaling. Comparison of the gene expression patterns elicited by these mutations with the wild-type ERα (WT) pattern provides mode-specific data concerning transcriptional regulation by ERα. We expressed these constructs in the ER-negative osteoblastic cell line hFOB (-/+ estrogen) and performed global RNA-sequencing. Using a series of pair-wise comparisons, we generated three lists of genes that were regulated either by the nuclear ERE-dependent, nuclear ERE-independent, or extra-nuclear actions of ERα. Pathway and gene ontology analyses revealed that genes regulated through the nuclear ERE and nuclear non-ERE pathways were largely involved in transcriptional regulation, whereas genes regulated through extra-nuclear mechanisms are involved in cytoplasmic signaling transduction pathways. We also intersected our data with genes linked to bone density and fractures from a recent genome-wide association study and found 25 of 72 genes (35%) regulated by estrogen. These data provide a comprehensive list of genes and pathways targeted by these specific modes of ERα action and suggest that "mode-specific" ligands could be developed to modulate specific ERα functionality in bone.


Effects of age on bone mRNA levels of sclerostin and other genes relevant to bone metabolism in humans.

  • Matthew M Roforth‎ et al.
  • Bone‎
  • 2014‎

Although aging is associated with a decline in bone formation in humans, the molecular pathways contributing to this decline remain unclear. Several previous clinical studies have shown that circulating sclerostin levels increase with age, raising the possibility that increased production of sclerostin by osteocytes leads to the age-related impairment in bone formation. Thus, in the present study, we examined circulating sclerostin levels as well as bone mRNA levels of sclerostin using quantitative polymerase chain reaction (QPCR) analyses in needle bone biopsies from young (mean age, 30.0years) versus old (mean age, 72.9years) women. In addition, we analyzed the expression of genes in a number of pathways known to be altered with skeletal aging, based largely on studies in mice. While serum sclerostin levels were 46% higher (p<0.01) in the old as compared to the young women, bone sclerostin mRNA levels were no different between the two groups (p=0.845). However, genes related to notch signaling were significantly upregulated (p=0.003 when analyzed as a group) in the biopsies from the old women. In an additional analysis of 118 genes including those from genome-wide association studies related to bone density and/or fracture, BMP/TGFβ family genes, selected growth factors and nuclear receptors, and Wnt/Wnt-related genes, we found that mRNA levels of the Wnt inhibitor, SFRP1, were significantly increased (by 1.6-fold, p=0.0004, false discovery rate [q]=0.04) in the biopsies from the old as compared to the young women. Our findings thus indicate that despite increases in circulating sclerostin levels, bone sclerostin mRNA levels do not increase in elderly women. However, aging is associated with alterations in several key pathways and genes in humans that may contribute to the observed impairment in bone formation. These include notch signaling, which represents a potential therapeutic target for increasing bone formation in humans. Our studies further identified mRNA levels of SFRP1 as being increased in aging bone in humans, suggesting that this may also represent a viable target for the development of anabolic therapies for age-related bone loss and osteoporosis.


Targeting cellular senescence prevents age-related bone loss in mice.

  • Joshua N Farr‎ et al.
  • Nature medicine‎
  • 2017‎

Aging is associated with increased cellular senescence, which is hypothesized to drive the eventual development of multiple comorbidities. Here we investigate a role for senescent cells in age-related bone loss through multiple approaches. In particular, we used either genetic (i.e., the INK-ATTAC 'suicide' transgene encoding an inducible caspase 8 expressed specifically in senescent cells) or pharmacological (i.e., 'senolytic' compounds) means to eliminate senescent cells. We also inhibited the production of the proinflammatory secretome of senescent cells using a JAK inhibitor (JAKi). In aged (20- to 22-month-old) mice with established bone loss, activation of the INK-ATTAC caspase 8 in senescent cells or treatment with senolytics or the JAKi for 2-4 months resulted in higher bone mass and strength and better bone microarchitecture than in vehicle-treated mice. The beneficial effects of targeting senescent cells were due to lower bone resorption with either maintained (trabecular) or higher (cortical) bone formation as compared to vehicle-treated mice. In vitro studies demonstrated that senescent-cell conditioned medium impaired osteoblast mineralization and enhanced osteoclast-progenitor survival, leading to increased osteoclastogenesis. Collectively, these data establish a causal role for senescent cells in bone loss with aging, and demonstrate that targeting these cells has both anti-resorptive and anabolic effects on bone. Given that eliminating senescent cells and/or inhibiting their proinflammatory secretome also improves cardiovascular function, enhances insulin sensitivity, and reduces frailty, targeting this fundamental mechanism to prevent age-related bone loss suggests a novel treatment strategy not only for osteoporosis, but also for multiple age-related comorbidities.


Characterization of mesenchymal progenitor cells isolated from human bone marrow by negative selection.

  • Ulrike I Mödder‎ et al.
  • Bone‎
  • 2012‎

Studies on the pathogenesis of osteoporosis and other metabolic bone diseases would be greatly facilitated by the development of approaches to assess changes in gene expression in osteoblast/osteoprogenitor populations in vivo without the potentially confounding effects of in vitro culture and expansion of the cells. While positive selection to identify a progenitor population in human marrow can be used to select for cells capable of osteoblast differentiation, each of the markers that have been used to identify marrow mesenchymal populations (alkaline phosphatase [AP], Stro-1, CD29, CD49a, CD73, CD90, CD105, CD166, CD44, CD146 and CD271) may be expressed on distinct subsets of marrow mesenchymal cells. Thus, positive selection with one or more of these markers could exclude a possibly relevant cell population that may undergo important changes in various clinical conditions. In the present report, we describe the isolation and characterization of human osteoprogenitor cells obtained by depletion of bone marrow cells of all hematopoietic lineage/hematopoietic stem cells and endothelial/endothelial precursor cells (lin-/CD34/CD31-). The yield of lin-/CD34/CD31- cells from ~10 mL of bone marrow (~80 million mononuclear cells) was ~80,000 cells (0.1% of mononuclear cells). While not selected on the basis of expression for the mesenchymal marker, Stro-1, 68% of these cells were Stro-1+. Using linear whole transcriptome amplification followed by quantitative polymerase chain reaction (QPCR) analysis, we also demonstrated that, compared to lin- cells (which are already depleted of hematopoietic cells), lin-/CD34/31- cells expressed markedly lower mRNA levels for the endothelial/hematopoietic markers, CD34, CD31, CD45, and CD133. Lin-/CD34/31- cells were also enriched for the expression of mesenchymal/osteoblastic markers, with a further increase in runx2, osterix, and AP mRNA expression following in vitro culture under osteogenic conditions. Importantly, lin-/CD34/31- cells contained virtually all of the mineralizing cells in human marrow: while these cells displayed robust calcium deposition in vitro, lin-/CD34/31+ cells demonstrated little or no mineralization when cultured under identical osteogenic conditions. Lin-/CD34/31- cells thus represent a human bone marrow population highly enriched for mesenchymal/osteoblast progenitor cells that can be analyzed without in vitro culture in various metabolic bone disorders, including osteoporosis and aging.


TGF-β induces Wnt10b in osteoclasts from female mice to enhance coupling to osteoblasts.

  • Kuniaki Ota‎ et al.
  • Endocrinology‎
  • 2013‎

In young adults, bone lost through osteoclast-mediated resorption is precisely replaced in both location and amount. Understanding how these two processes are coupled is crucial to advancing treatments for osteoporosis, a disease that progresses when the processes become uncoupled. We documented that osteoclasts secrete the mammalian integration 1 gene that is the homolog of Drosophila Wngless (Wnt) 10b, bone morphogenetic protein 6 (BMP6), and the chemokine sphingosin 1 phosphate (S1P) to promote mesenchymal cell mineralization in vitro. During bone resorption, TGF-β1 is released from the bone extracellular matrix and activated by osteoclasts. Thus, TGF-β1 levels are elevated during the resorption phase of bone turnover. We therefore investigated the influences of TGF-β1 on osteoclast-mediated support of mineralization. TGF-β1 increased osteoclast production of Wnt10b, but not BMP6 or S1P. Blocking Wnt10b activity with the Wnt signaling inhibitor Dickkoph-related protein 1 suppressed the ability of TGF-β-treated osteoclast-conditioned media to promote osteoblast mineralization. Examination of TGF-β signaling in osteoclasts revealed that induction of Wnt10b expression was dependent on Smad2/3 activation and independent from TGF-β1 stimulation of protein kinase B (AKT) or MAPK kinase. TGF-β1-treated osteoclast-conditioned media from cells with blocked Smad signaling exhibited a reduced ability to support mineralization, demonstrating the importance of Smad signaling in this response. Parallel cultures with suppressed TGF-β activation of AKT or MAPK kinase signaling retained their ability to elevate mineralization. These results demonstrate that TGF-β1 stimulates Wnt10b production in osteoclasts, which may enhance restoration of the bone lost during the resorptive phase of bone turnover.


Transforming growth factor beta 1 induces CXCL16 and leukemia inhibitory factor expression in osteoclasts to modulate migration of osteoblast progenitors.

  • Kuniaki Ota‎ et al.
  • Bone‎
  • 2013‎

The processes of bone resorption and bone formation are tightly coupled in young adults, which is crucial to maintenance of bone integrity. We have documented that osteoclasts secrete chemotactic agents to recruit osteoblast lineage cells, contributing to coupling. Bone formation subsequent to bone resorption becomes uncoupled with aging, resulting in significant bone loss. During bone resorption, osteoclasts release and activate transforming growth factor beta 1 (TGF-β1) from the bone matrix; thus, elevated bone resorption increases the level of active TGF-β in the local environment during aging. In this study, we examined the influences of TGF-β1 on the ability of osteoclasts to recruit osteoblasts. TGF-β1 increased osteoclast expression of the chemokine CXCL16 to promote osteoblast migration. TGF-β1 also directly stimulated osteoblast migration; however, this direct response was blocked by conditioned medium from TGF-β1-treated osteoclasts due to the presence of leukemia inhibitory factor (LIF) in the medium. CXCL16 and LIF expression was dependent on TGF-β1 activation of Smad2 and Smad3. These results establish that TGF-β1 induces CXCL16 and LIF production in osteoclasts, which modulate recruitment of osteoblasts to restore the bone lost during the resorptive phase of bone turnover.


Sclerostin is expressed in osteoclasts from aged mice and reduces osteoclast-mediated stimulation of mineralization.

  • Kuniaki Ota‎ et al.
  • Journal of cellular biochemistry‎
  • 2013‎

Osteoclast-mediated bone resorption precedes osteoblast-mediated bone formation through early adulthood, but formation fails to keep pace with resorption during aging. We previously identified several factors produced by osteoclasts that promote bone formation. In this study, we determined if osteoclast-produced factors contribute to the impaired bone formation with aging. We previously found that mice between the ages of 18 and 22 months develop age-related bone loss. Bone marrow-derived pre-osteoclasts were isolated from 6-week, 12-month, and 18- to 24-month-old mice and differentiated into osteoclasts in vitro. Conditioned media were collected and compared for osteoblast mineralization support. Conditioned medium from osteoclasts from all ages was able to support mineralization of bone marrow stromal cells. Concentrating the conditioned medium from 6-week-old and 12-month-old mouse marrow cells-derived osteoclasts enhanced mineralization support whereas concentrated conditioned medium from 18- to 24-month-old mouse marrow-derived osteoclasts repressed mineralization compared to base medium. This observation suggests that an inhibitor of mineralization was secreted by aged murine osteoclasts. Gene and protein analysis revealed that the Wnt antagonist sclerostin was significantly elevated in the conditioned media from 24-month-old mouse cells compared to 6-week-old mouse cells. Antibodies directed to sclerostin neutralized the influences of the aged mouse cell concentrated conditioned media on mineralization. Sclerostin is primarily produced by osteocytes in young animals. This study demonstrates that osteoclasts from aged mice also produce sclerostin in quantities that may contribute to the age-related impairment in bone formation.


Senolytics reduce coronavirus-related mortality in old mice.

  • Christina D Camell‎ et al.
  • Science (New York, N.Y.)‎
  • 2021‎

The COVID-19 pandemic has revealed the pronounced vulnerability of the elderly and chronically ill to severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2)-induced morbidity and mortality. Cellular senescence contributes to inflammation, multiple chronic diseases, and age-related dysfunction, but effects on responses to viral infection are unclear. Here, we demonstrate that senescent cells (SnCs) become hyper-inflammatory in response to pathogen-associated molecular patterns (PAMPs), including SARS-CoV-2 spike protein-1, increasing expression of viral entry proteins and reducing antiviral gene expression in non-SnCs through a paracrine mechanism. Old mice acutely infected with pathogens that included a SARS-CoV-2-related mouse β-coronavirus experienced increased senescence and inflammation, with nearly 100% mortality. Targeting SnCs by using senolytic drugs before or after pathogen exposure significantly reduced mortality, cellular senescence, and inflammatory markers and increased antiviral antibodies. Thus, reducing the SnC burden in diseased or aged individuals should enhance resilience and reduce mortality after viral infection, including that of SARS-CoV-2.


LPS-induced premature osteocyte senescence: Implications in inflammatory alveolar bone loss and periodontal disease pathogenesis.

  • Ruben Aquino-Martinez‎ et al.
  • Bone‎
  • 2020‎

Cellular senescence is associated with inflammation and extracellular matrix tissue remodeling through the secretion of proteins termed the senescence-associated secretory phenotype (SASP). Although osteocyte senescence in older individuals in the skeleton is well recognized, whether young alveolar osteocytes can also become senescent is unknown. This is potentially important in the context of periodontal disease, which is an inflammatory condition caused by a gradual change from symbiotic to pathogenic oral microflora that can lead to tooth loss. Our aim was to identify whether senescent osteocytes accumulate in young alveolar bone and whether bacterial-derived lipopolysaccharide (LPS) can influence cellular senescence in alveolar bone. An osteocyte-enriched cell population isolated from alveolar bone expressed increased levels of the known senescence marker p16Ink4a, as well as select SASP markers known to be implicated alveolar bone resorption (Icam1, Il6, Il17, Mmp13 and Tnfα), compared to ramus control cells. Increased senescence of alveolar bone osteocytes was also observed in vivo using the senescence-associated distension of satellites (SADS) assay and increased γH2AX, a marker of DNA damage associated with senescent cells. To approximate a bacterial infection in vitro, alveolar osteocytes were treated with LPS. We found increased expression of various senescence and SASP markers, increased γH2AX staining, increased SA-β-Gal activity and the redistribution of F-actin leading to a larger and flattened cell morphology, all hallmarks of cellular senescence. In conclusion, our data suggests a model whereby bacterial-derived LPS stimulates premature alveolar osteocyte senescence, which in combination with the resultant SASP, could potentially contribute to the onset of alveolar bone loss.


Identification of a suitable endogenous control miRNA in bone aging and senescence.

  • Japneet Kaur‎ et al.
  • Gene‎
  • 2022‎

MicroRNAs (miRNAs) are promising tools as biomarkers and therapeutic agents in various chronic diseases such as osteoporosis, cancers, type I and II diabetes, and cardiovascular diseases. Considering the rising interest in the regulatory role of miRNAs in bone metabolism, aging, and cellular senescence, accurate normalization of qPCR-based miRNA expression data using an optimal endogenous control becomes crucial. We used a systematic approach to select candidate endogenous control miRNAs that exhibit high stability with aging from our miRNA sequence data and literature search. Validation of miRNA expression was performed using qPCR and their comprehensive stability was assessed using the RefFinder tool which is based on four statistical algorithms: GeNorm, NormFinder, BestKeeper, and comparative delta CT. The selected endogenous control was then validated for its stability in mice and human bone tissues, and in bone marrow stromal cells (BMSCs) following induction of senescence and senolytic treatment. Finally, the utility of selected endogenous control versus U6 was tested by using each as a normalizer to measure the expression of miR-34a, a miRNA known to increase with age and senescence. Our results show that Let-7f did not change across the groups with aging, senescence or senolytic treatment, and was the most stable miRNA, whereas U6 was the least stable. Moreover, using Let-7f as a normalizer resulted in significantly increased expression of miR-34a with aging and senescence and decreased expression following senolytic treatment. However, the expression pattern for miR-34a reversed for each of these conditions when U6 was used as a normalizer. We show that optimal endogenous control miRNAs, such as Let-7f, are essential for accurate normalization of miRNA expression data to increase the reliability of results and prevent misinterpretation. Moreover, we present a systematic strategy that is transferrable and can easily be used to identify endogenous control miRNAs in other biological systems and conditions.


Targeted clearance of p21- but not p16-positive senescent cells prevents radiation-induced osteoporosis and increased marrow adiposity.

  • Abhishek Chandra‎ et al.
  • Aging cell‎
  • 2022‎

Cellular senescence, which is a major cause of tissue dysfunction with aging and multiple other conditions, is known to be triggered by p16Ink4a or p21Cip1 , but the relative contributions of each pathway toward inducing senescence are unclear. Here, we directly addressed this issue by first developing and validating a p21-ATTAC mouse with the p21Cip1 promoter driving a "suicide" transgene encoding an inducible caspase-8 which, upon induction, selectively kills p21Cip1 -expressing senescent cells. Next, we used the p21-ATTAC mouse and the established p16-INK-ATTAC mouse to directly compare the contributions of p21Cip1 versus p16Ink4a in driving cellular senescence in a condition where a tissue phenotype (bone loss and increased marrow adiposity) is clearly driven by cellular senescence-specifically, radiation-induced osteoporosis. Using RNA in situ hybridization, we confirmed the reduction in radiation-induced p21Cip1 - or p16Ink4a -driven transcripts following senescent cell clearance in both models. However, only clearance of p21Cip1 +, but not p16Ink4a +, senescent cells prevented both radiation-induced osteoporosis and increased marrow adiposity. Reduction in senescent cells with dysfunctional telomeres following clearance of p21Cip1 +, but not p16Ink4a +, senescent cells also reduced several of the radiation-induced pro-inflammatory senescence-associated secretory phenotype factors. Thus, by directly comparing senescent cell clearance using two parallel genetic models, we demonstrate that radiation-induced osteoporosis is driven predominantly by p21Cip1 - rather than p16Ink4a -mediated cellular senescence. Further, this approach can be used to dissect the contributions of these pathways in other senescence-associated conditions, including aging across tissues.


A new gene set identifies senescent cells and predicts senescence-associated pathways across tissues.

  • Dominik Saul‎ et al.
  • Nature communications‎
  • 2022‎

Although cellular senescence drives multiple age-related co-morbidities through the senescence-associated secretory phenotype, in vivo senescent cell identification remains challenging. Here, we generate a gene set (SenMayo) and validate its enrichment in bone biopsies from two aged human cohorts. We further demonstrate reductions in SenMayo in bone following genetic clearance of senescent cells in mice and in adipose tissue from humans following pharmacological senescent cell clearance. We next use SenMayo to identify senescent hematopoietic or mesenchymal cells at the single cell level from human and murine bone marrow/bone scRNA-seq data. Thus, SenMayo identifies senescent cells across tissues and species with high fidelity. Using this senescence panel, we are able to characterize senescent cells at the single cell level and identify key intercellular signaling pathways. SenMayo also represents a potentially clinically applicable panel for monitoring senescent cell burden with aging and other conditions as well as in studies of senolytic drugs.


Global and Spatial Compartmental Interrelationships of Bone Density, Microstructure, Geometry and Biomechanics in the Distal Radius in a Colles' Fracture Study Using HR-pQCT.

  • Kazuteru Shiraishi‎ et al.
  • Frontiers in endocrinology‎
  • 2021‎

Bone parameters derived from HR-pQCT have been investigated on a parameter-by-parameter basis for different clinical conditions. However, little is known regarding the interrelationships of bone parameters and the spatial distribution of these interrelationships. In this work: 1) we investigate compartmental interrelationships of bone parameters; 2) assess the spatial distribution of interrelationships of bone parameters; and 3) compare interrelationships of bone parameters between postmenopausal women with and without a recent Colles' fracture.


MicroRNA-19a-3p Decreases with Age in Mice and Humans and Inhibits Osteoblast Senescence.

  • Japneet Kaur‎ et al.
  • JBMR plus‎
  • 2023‎

Aging is a major risk factor for most chronic diseases, including osteoporosis, and is characterized by an accumulation of senescent cells in various tissues. MicroRNAs (miRNAs) are critical regulators of bone aging and cellular senescence. Here, we report that miR-19a-3p decreases with age in bone samples from mice as well as in posterior iliac crest bone biopsies of younger versus older healthy women. miR-19a-3p also decreased in mouse bone marrow stromal cells following induction of senescence using etoposide, H2O2, or serial passaging. To explore the transcriptomic effects of miR-19a-3p, we performed RNA sequencing of mouse calvarial osteoblasts transfected with control or miR-19a-3p mimics and found that miR-19a-3p overexpression significantly altered the expression of various senescence, senescence-associated secretory phenotype-related, and proliferation genes. Specifically, miR-19a-3p overexpression in nonsenescent osteoblasts significantly suppressed p16 Ink4a and p21 Cip1 gene expression and increased their proliferative capacity. Finally, we established a novel senotherapeutic role for this miRNA by treating miR-19a-3p expressing cells with H2O2 to induce senescence. Interestingly, these cells exhibited lower p16 Ink4a and p21 Cip1 expression, increased proliferation-related gene expression, and reduced SA-β-Gal+ cells. Our results thus establish that miR-19a-3p is a senescence-associated miRNA that decreases with age in mouse and human bones and is a potential senotherapeutic target for age-related bone loss. © 2023 The Authors. JBMR Plus published by Wiley Periodicals LLC on behalf of American Society for Bone and Mineral Research.


Identification of a novel senolytic agent, navitoclax, targeting the Bcl-2 family of anti-apoptotic factors.

  • Yi Zhu‎ et al.
  • Aging cell‎
  • 2016‎

Clearing senescent cells extends healthspan in mice. Using a hypothesis-driven bioinformatics-based approach, we recently identified pro-survival pathways in human senescent cells that contribute to their resistance to apoptosis. This led to identification of dasatinib (D) and quercetin (Q) as senolytics, agents that target some of these pathways and induce apoptosis preferentially in senescent cells. Among other pro-survival regulators identified was Bcl-xl. Here, we tested whether the Bcl-2 family inhibitors, navitoclax (N) and TW-37 (T), are senolytic. Like D and Q, N is senolytic in some, but not all types of senescent cells: N reduced viability of senescent human umbilical vein epithelial cells (HUVECs), IMR90 human lung fibroblasts, and murine embryonic fibroblasts (MEFs), but not human primary preadipocytes, consistent with our previous finding that Bcl-xl siRNA is senolytic in HUVECs, but not preadipocytes. In contrast, T had little senolytic activity. N targets Bcl-2, Bcl-xl, and Bcl-w, while T targets Bcl-2, Bcl-xl, and Mcl-1. The combination of Bcl-2, Bcl-xl, and Bcl-w siRNAs was senolytic in HUVECs and IMR90 cells, while combination of Bcl-2, Bcl-xl, and Mcl-1 siRNAs was not. Susceptibility to N correlated with patterns of Bcl-2 family member proteins in different types of human senescent cells, as has been found in predicting response of cancers to N. Thus, N is senolytic and acts in a potentially predictable cell type-restricted manner. The hypothesis-driven, bioinformatics-based approach we used to discover that dasatinib (D) and quercetin (Q) are senolytic can be extended to increase the repertoire of senolytic drugs, including additional cell type-specific senolytic agents.


A DNA binding mutation in estrogen receptor-α leads to suppression of Wnt signaling via β-catenin destabilization in osteoblasts.

  • Ulrike I Mödder‎ et al.
  • Journal of cellular biochemistry‎
  • 2012‎

Estrogen receptors (ERs) play vital roles in the function and remodeling of bone. Their cellular mechanisms can broadly be categorized into those involving direct DNA binding (classical) or indirect DNA binding (non-classical). The generation of non-classical ER knock-in (ERα(-/NERKI) ) mice provides a unique opportunity to define these pathways in bone. We previously demonstrated that ERα(-/NERKI) mice exhibit an osteoporotic phenotype; however, the mechanism(s) for this remain unresolved. Gene expression analyses of cortical bone from ERα(-/NERKI) mice revealed suppression of lymphoid enhancer factor-1 (Lef1), a classic Wnt-responsive transcription factor that associates with β-catenin. Since Wnt signaling is generally considered bone anabolic, this observation leads to the hypothesis that NERKI-induced suppression of Wnt signaling may contribute to the low bone mass phenotype. We generated ERα(-/NERKI) mice crossed with the Wnt-responsive TOPGAL transgenic mouse model and observed significantly less β-galactosidase activity in ERα(-/NERKI) mice, confirming suppression of Wnt activity in vivo. Adenoviral expression of the NERKI receptor using an in vitro cell system resulted in the induction of several secreted antagonists of Wnt signaling. Furthermore, expression of NERKI abrogated Wnt10b-dependent Wnt activation using a lentiviral-mediated reporter assay. Finally, expression of NERKI destabilized β-catenin cellular protein levels and disrupted ER/β-catenin interactions. Collectively, these data suggest the osteoporotic phenotype of ERα(-/NERKI) mice may involve the suppression of Lef1-mediated Wnt signaling through both the stimulation of secreted Wnt inhibitors and/or disruption of normal β-catenin function.


Identification of osteoclast-osteoblast coupling factors in humans reveals links between bone and energy metabolism.

  • Megan M Weivoda‎ et al.
  • Nature communications‎
  • 2020‎

Bone remodeling consists of resorption by osteoclasts followed by formation by osteoblasts, and osteoclasts are a source of bone formation-stimulating factors. Here we utilize osteoclast ablation by denosumab (DMAb) and RNA-sequencing of bone biopsies from postmenopausal women to identify osteoclast-secreted factors suppressed by DMAb. Based on these analyses, LIF, CREG2, CST3, CCBE1, and DPP4 are likely osteoclast-derived coupling factors in humans. Given the role of Dipeptidyl Peptidase-4 (DPP4) in glucose homeostasis, we further demonstrate that DMAb-treated participants have a significant reduction in circulating DPP4 and increase in Glucagon-like peptide (GLP)-1 levels as compared to the placebo-treated group, and also that type 2 diabetic patients treated with DMAb show significant reductions in HbA1c as compared to patients treated either with bisphosphonates or calcium and vitamin D. Thus, our results identify several coupling factors in humans and uncover osteoclast-derived DPP4 as a potential link between bone remodeling and energy metabolism.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: