Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 20 papers out of 24 papers

Toll-Like Receptor 9 Activation Rescues Impaired Antibody Response in Needle-free Intradermal DNA Vaccination.

  • Prabhu S Arunachalam‎ et al.
  • Scientific reports‎
  • 2016‎

The delivery of plasmid DNA to the skin can target distinct subsets of dermal dendritic cells to confer a superior immune response. The needle-free immunization technology offers a reliable, safe and efficient means to administer intradermal (ID) injections. We report here that the ID injection of DNA vectors using an NF device (NF-ID) elicits a superior cell-mediated immune response, at much lesser DNA dosage, comparable in magnitude to the traditional intramuscular immunization. However, the humoral response is significantly impaired, possibly at the stage of B cell isotype switching. We found that the NF-ID administration deposits the DNA primarily on the epidermis resulting in a rapid loss of the DNA as well as the synthesized antigen due to the faster regeneration rate of the skin layers. Therefore, despite the immune-rich nature of the skin, the NF-ID immunization of DNA vectors may be limited by the impaired humoral response. Additional booster injections are required to augment the antibody response. As an alternative and a viable solution, we rescued the IgG response by coadministration of a Toll-like receptor 9 agonist, among other adjuvants examined. Our work has important implication for the optimization of the emerging needle-free technology for ID immunization.


Anti-atherogenic effect of Nepitrin-7-O-glucoside: A flavonoid isolated from Nepeta hindostana via acting on PPAR - α receptor.

  • Sushma Devi‎ et al.
  • Steroids‎
  • 2021‎

Atherogenic dyslipidemia is a condition and responsible for the induction of major cardiovascular diseases. Traditionally, Nepeta hindostana a medicinal plant commonly used as cardioprotective in Indo-Pak regions has gained importance because of its therapeutic active flavonoid Nepitrin-7-O-glucoside. Flavonoid-glycosides are steroids having the ability to exert specific, decisive action on the cardiac muscle. In the present research work flavonoid, Nepitrin-7-O-glucoside was isolated from methanolic extract via chromatographic techniques. The structure was elucidated and confirmed by different spectral techniques like Mass and 1H NMR spectrometry. Various preclinical atherosclerosis parameters such as lipid levels, SGOT/SGPT, body weight, histology of aorta and heart were estimated and beneficial effect of Nepitrin in high-fat diet (HFD) induced atherosclerosis for six weeks were observed. Outcomes of the preclinical results showed and proved that Nepitrin significantly improved dyslipidemia at an effective dose of 50 mg/kg as compared with HFD control and Simvastatin. Molecular docking showed significant binding affinity towards the target PPAR-α receptor (PDB: 2P54). Further the docked ligands with PDB: 2P54 were exposed to molecular dynamics studies to confirm the dynamic behaviour of PPAR-α receptor. Outcomes of the results of the in-vivo study and molecular dynamics study were in correlation with each-others. Further, it can be concluded that Nepitrin has a potent antiatherogenic agent and act by reducing the lipid levels via acting on PPAR-α receptor and regenerating the damaged cells.


Composition dependent structural phase transition and optical band gap tuning in InSe thin films.

  • Harpreet Singh‎ et al.
  • Heliyon‎
  • 2019‎

Bulk alloys of In x Se100-x (x = 5, 10, 20, 30, 40 and 50) are prepared using melt quenching technique. Thin films having thickness ~750 nm of these prepared bulk alloys are fabricated using thermal evaporation technique on glass substrate. The as-deposited In x Se100-x thin films with x ≤ 40 are amorphous and In50Se50 thin film is crystalline in nature verified from X-ray diffraction (XRD). The change in morphology of deposited thin films with indium content also verifies structural phase transition and found that the phase transition started with x = 40 which is not detected in XRD pattern. The drastic change in transmission is found with 50% indium content. In50Se50 thin film has less than 30% transmission whereas other films are highly transparent. Optical band gap is calculated using Tauc's plot and decrease in optical band gap is observed with indium content. The variation of optical band gap from 1.88 eV to 1.12 eV is achieved with indium content of 5%-50%. The structural transition and change in optical band gap depict that InSe thin films are potential candidates in various technological applications.


Evaluation of effect of alcoholic extract of heartwood of Pterocarpus marsupium on in vitro antioxidant, anti-glycation, sorbitol accumulation and inhibition of aldose reductase activity.

  • Pankaj Gupta‎ et al.
  • Journal of traditional and complementary medicine‎
  • 2017‎

Rising popularity of phytomedicines in various diseased conditions have strengthened the significance of plant-research and evaluation of phytoextracts in clinical manifestations. Pterocarpus marsupium Roxb., a medicinal plant, known for its anti-oxidant and anti-diabetic activity is a rich source of phytochemicals with antihyperglycemic and antihyperlipidemic activities. However, its possible role in diabetic complications is not evaluated yet. The present study explores the possible role of alcoholic extract of heartwood of P. marsupium in the treatment of long-term diabetic complications. The alcoholic extract of P. marsupium was evaluated for advanced glycation-end-products formation, erythrocyte sorbitol accumulation and rat kidney aldose reductase enzyme inhibition at the concentration of 25-400 μg/ml using in-vitro bioassays. Also the phytoextract at the concentration of 10-320 μg/ml was evaluated for its antioxidant potential by in-vitro antioxidant assays which includes, determination of total phenol content; reducing power assay; nitric oxide scavenging activity; superoxide radical scavenging activity; total antioxidant capacity; total flavonoid content; DPPH scavenging activity; and hydrogen peroxide scavenging activity. The alcoholic extract of P. marsupium across varying concentrations showed inhibitory effect as evident by IC50 on advanced glycation-end-products formation (55.39 μg/ml), sorbitol accumulation (151.00 μg/ml) and rat kidney aldose reductase (195.88 μg/ml). The phytoextract also exhibited high phenolic and flavonoid contents with promising antioxidant potential against the antioxidant assays evaluated. The present investigation suggests that the phytoextract showed prominent antioxidant, antiglycation property and, inhibited accumulation of sorbitol and ALR enzyme, thus promising a beneficial role in reducing/delaying diabetic complications.


Neutralizing Efficacy of Encapsulin Nanoparticles against SARS-CoV2 Variants of Concern.

  • Sara Khaleeq‎ et al.
  • Viruses‎
  • 2023‎

Rapid emergence of the SARS-CoV-2 variants has dampened the protective efficacy of existing authorized vaccines. Nanoparticle platforms offer a means to improve vaccine immunogenicity by presenting multiple copies of desired antigens in a repetitive manner which closely mimics natural infection. We have applied nanoparticle display combined with the SpyTag-SpyCatcher system to design encapsulin-mRBD, a nanoparticle vaccine displaying 180 copies of the monomeric SARS-CoV-2 spike receptor-binding domain (RBD). Here we show that encapsulin-mRBD is strongly antigenic and thermotolerant for long durations. After two immunizations, squalene-in-water emulsion (SWE)-adjuvanted encapsulin-mRBD in mice induces potent and comparable neutralizing antibody titers of 105 against wild-type (B.1), alpha, beta, and delta variants of concern. Sera also neutralizes the recent Omicron with appreciable neutralization titers, and significant neutralization is observed even after a single immunization.


Snail maintains the stem/progenitor state of skin epithelial cells and carcinomas through the autocrine effect of matricellular protein Mindin.

  • Krithika Badarinath‎ et al.
  • Cell reports‎
  • 2022‎

Preservation of a small population of cancer stem cells (CSCs) within a heterogeneous carcinoma serves as a paradigm to understand how select cells in a tissue maintain their undifferentiated status. In both embryogenesis and cancer, Snail has been correlated with stemness, but the molecular underpinning of this phenomenon remains largely ill-defined. In models of cutaneous squamous cell carcinoma (cSCC), we discovered a non-epithelial-mesenchymal transition function for the transcription factor Snail in maintaining the stemness of epidermal keratinocytes. Snail-expressing cells secrete the matricellular protein Mindin, which functions in an autocrine fashion to activate a Src-STAT3 pathway to reinforce their stem/progenitor phenotype. This pathway is activated by the engagement of Mindin with the leukocyte-specific integrin, CD11b (ITGAM), which is also unexpectedly expressed by epidermal keratinocytes. Interestingly, disruption of this signaling module in human cSCC attenuates tumorigenesis, suggesting that targeting Mindin would be a promising therapeutic approach to hinder cancer recurrence.


Enhanced protective efficacy of a thermostable RBD-S2 vaccine formulation against SARS-CoV-2 and its variants.

  • Nidhi Mittal‎ et al.
  • NPJ vaccines‎
  • 2023‎

With the rapid emergence of variants of concern (VOC), the efficacy of currently licensed vaccines has reduced drastically. VOC mutations largely occur in the S1 subunit of Spike. The S2 subunit of SARS-CoV-2 is conserved and thus more likely to elicit broadly reactive immune responses that could improve protection. However, the contribution of the S2 subunit in improving the overall efficacy of vaccines remains unclear. Therefore, we designed, and evaluated the immunogenicity and protective potential of a stabilized SARS-CoV-2 Receptor Binding Domain (RBD) fused to a stabilized S2. Immunogens were expressed as soluble proteins with approximately fivefold higher purified yield than the Spike ectodomain and formulated along with Squalene-in-water emulsion (SWE) adjuvant. Immunization with S2 alone failed to elicit a neutralizing immune response, but significantly reduced lung viral titers in mice challenged with the heterologous Beta variant. In hamsters, SWE-formulated RS2 (a genetic fusion of stabilized RBD with S2) showed enhanced immunogenicity and efficacy relative to corresponding RBD and Spike formulations. Despite being based on the ancestral Wuhan strain of SARS-CoV-2, RS2 elicited broad neutralization, including against Omicron variants (BA.1, BA.5 and BF.7), and the clade 1a WIV-1 and SARS-CoV-1 strains. RS2 elicited sera showed enhanced competition with both S2 directed and RBD Class 4 directed broadly neutralizing antibodies, relative to RBD and Spike elicited sera. When lyophilized, RS2 retained antigenicity and immunogenicity even after incubation at 37 °C for a month. The data collectively suggest that the RS2 immunogen is a promising modality to combat SARS-CoV-2 variants.


Enhancing Immunogenicity of a Thermostable, Efficacious SARS-CoV-2 Vaccine Formulation through Oligomerization and Adjuvant Choice.

  • Mohammad Suhail Khan‎ et al.
  • Pharmaceutics‎
  • 2023‎

Currently deployed SARS-CoV-2 vaccines all require storage at refrigerated or sub-zero temperatures. We demonstrate that after month-long incubation at 37 °C, solubilization, and formulation with squalene-in-water emulsion adjuvant, a stabilized receptor binding domain retains immunogenicity and protective efficacy. We also examine the effects of trimerization of the stabilized RBD, as well as of additional adjuvants, on both B and T-cell responses. The additional emulsion or liposome-based adjuvants contained a synthetic TLR-4 ligand and/or the saponin QS-21. Trimerization enhanced immunogenicity, with significant antibody titers detectable after a single immunization. Saponin-containing adjuvants elicited enhanced immunogenicity relative to both emulsion and aluminum hydroxide adjuvanted formulations lacking these immunostimulants. Trimeric RBD formulated with liposomal based adjuvant containing both TLR-4 ligand and saponin elicited a strongly Th1 biased response, with ~10-fold higher neutralization titers than the corresponding aluminum hydroxide adjuvanted formulation. The SARS-CoV-2 virus is now endemic in humans, and it is likely that periodic updating of vaccine formulations in response to viral evolution will continue to be required to protect vulnerable individuals. In this context, it is desirable to have efficacious, thermostable vaccine formulations to facilitate widespread vaccine coverage, including in low- and middle-income countries, where global access rights to clinically de-risked adjuvants will be important moving forward.


Nephroprotective effect of Curculigo orchiodies in streptozotocin-nicotinamide induced diabetic nephropathy in wistar rats.

  • Krishan Singla‎ et al.
  • Journal of Ayurveda and integrative medicine‎
  • 2020‎

Chronic hyperglycemia induced oxidative stress and dyslipidemia in diabetic nephropathy may lead to chronic renal damage. Thus, counteracting oxidative stress might represent an interesting approach in alleviating hyperglycemia-induced renal damage.


Highly Thermotolerant SARS-CoV-2 Vaccine Elicits Neutralising Antibodies against Delta and Omicron in Mice.

  • Petrus Jansen van Vuren‎ et al.
  • Viruses‎
  • 2022‎

As existing vaccines fail to completely prevent COVID-19 infections or community transmission, there is an unmet need for vaccines that can better combat SARS-CoV-2 variants of concern (VOC). We previously developed highly thermo-tolerant monomeric and trimeric receptor-binding domain derivatives that can withstand 100 °C for 90 min and 37 °C for four weeks and help eliminate cold-chain requirements. We show that mice immunised with these vaccine formulations elicit high titres of antibodies that neutralise SARS-CoV-2 variants VIC31 (with Spike: D614G mutation), Delta and Omicron (BA.1.1) VOC. Compared to VIC31, there was an average 14.4-fold reduction in neutralisation against BA.1.1 for the three monomeric antigen-adjuvant combinations and a 16.5-fold reduction for the three trimeric antigen-adjuvant combinations; the corresponding values against Delta were 2.5 and 3.0. Our findings suggest that monomeric formulations are suitable for upcoming Phase I human clinical trials and that there is potential for increasing the efficacy with vaccine matching to improve the responses against emerging variants. These findings are consistent with in silico modelling and AlphaFold predictions, which show that, while oligomeric presentation can be generally beneficial, it can make important epitopes inaccessible and also carries the risk of eliciting unwanted antibodies against the oligomerisation domain.


An allied approach for in vitro modulation of aldose reductase, sorbitol accumulation and advanced glycation end products by flavonoid rich extract of Coriandrum sativum L. seeds.

  • Anu Kajal‎ et al.
  • Toxicology reports‎
  • 2018‎

Traditional herbal medicines are attaining more popularity and are being widely practiced. Coriandrum sativum L. is one of the oldest herbal medicinal plants valued for its nutritional and medicinal properties. Present investigation was focussed on evaluation of attenuating potential of flavonoid rich extract of C. sativum (FCS) seeds against pathogenic markers of diabetic complications i.e. advanced glycation end products (AGEs), sorbitol and aldose reductase (ALR); by using in-vitro methods. Gas chromatography-mass spectrometry (GC-MS) and Infrared spectroscopy of FCS revealed the presence of different flavonoids. Results demonstrated that FCS has produced 79.80% inhibition of AGEs formation. Additionally, FCS was effective against sorbitol accumulation and ALR inhibition with IC50 values of 221 μg/ml and 6.08 μg/ml respectively. Molecular docking was conducted against three binding site for ALR, RAGEs and sorbitol dehydrogenase to explore their binding interactions with identified flavonoids. The constituents F2, F4 and F6 have shown good binding interactions with all the receptors. The visualisation of the docked complexes revealed the occurrence of hydrophobic forces and hydrogen bonding in receptor and docked constituents. The results were in support with experimental inhibitory activities of FCS against these biomarkers and provide a considerable basis for the identification and development of new inhibitors.


Dillenia indica L. attenuates diabetic nephropathy via inhibition of advanced glycation end products accumulation in STZ-nicotinamide induced diabetic rats.

  • Navpreet Kaur‎ et al.
  • Journal of traditional and complementary medicine‎
  • 2018‎

The present study was aimed to evaluate advanced glycation end products (AGEs) inhibitory activity of alcohol and hydro-alcohol extract (DAE and DHE) of Dillenia indica L. (Family: Dilleniaceae) and its potential in treatment of diabetic nephropathy by targeting markers of oxidative stress. D. indica was evaluated for its in vitro inhibitory activity against formation of AGEs by using bovine serum albumin. Diabetes was induced in male Wistar rats by streptozotocin (65 mg/kg i.p.) 15 min after nicotinamide (230 mg/kg, i.p.) administration. Diabetic rats were treated with different doses of extracts (100, 200 and 400 mg/kg) to analyze their nephroprotective effect. Tissue antioxidant enzymes level was measured along with the formation of AGEs in kidney to assess the effect of D. indica in ameliorating oxidative stress. D. indica showed significant inhibition of AGEs formation in vitro. D. indica produced significant attenuation in the glycemic status, renal parameter, lipid profile and level of antioxidant enzymes proving efficacy in diabetic nephropathy. Moreover, D. indica produced significant reduction in the formation of AGEs in kidneys. The present study concludes that D. indica as a possible therapeutic agent against diabetic nephropathy.


Immunogenicity and Protective Efficacy of a Highly Thermotolerant, Trimeric SARS-CoV-2 Receptor Binding Domain Derivative.

  • Sameer Kumar Malladi‎ et al.
  • ACS infectious diseases‎
  • 2021‎

The receptor binding domain (RBD) of SARS-CoV-2 is the primary target of neutralizing antibodies. We designed a trimeric, highly thermotolerant glycan engineered RBD by fusion to a heterologous, poorly immunogenic disulfide linked trimerization domain derived from cartilage matrix protein. The protein expressed at a yield of ∼80-100 mg/L in transiently transfected Expi293 cells, as well as CHO and HEK293 stable cell lines and formed homogeneous disulfide-linked trimers. When lyophilized, these possessed remarkable functional stability to transient thermal stress of up to 100 °C and were stable to long-term storage of over 4 weeks at 37 °C unlike an alternative RBD-trimer with a different trimerization domain. Two intramuscular immunizations with a human-compatible SWE adjuvanted formulation elicited antibodies with pseudoviral neutralizing titers in guinea pigs and mice that were 25-250 fold higher than corresponding values in human convalescent sera. Against the beta (B.1.351) variant of concern (VOC), pseudoviral neutralization titers for RBD trimer were ∼3-fold lower than against wildtype B.1 virus. RBD was also displayed on a designed ferritin-like Msdps2 nanoparticle. This showed decreased yield and immunogenicity relative to trimeric RBD. Replicative virus neutralization assays using mouse sera demonstrated that antibodies induced by the trimers neutralized all four VOC to date, namely B.1.1.7, B.1.351, P.1, and B.1.617.2 without significant differences. Trimeric RBD immunized hamsters were protected from viral challenge. The excellent immunogenicity, thermotolerance, and high yield of these immunogens suggest that they are a promising modality to combat COVID-19, including all SARS-CoV-2 VOC to date.


A Fyn biosensor reveals pulsatile, spatially localized kinase activity and signaling crosstalk in live mammalian cells.

  • Ananya Mukherjee‎ et al.
  • eLife‎
  • 2020‎

Cell behavior is controlled through spatio-temporally localized protein activity. Despite unique and often contradictory roles played by Src-family-kinases (SFKs) in regulating cell physiology, activity patterns of individual SFKs have remained elusive. Here, we report a biosensor for specifically visualizing active conformation of SFK-Fyn in live cells. We deployed combinatorial library screening to isolate a binding-protein (F29) targeting activated Fyn. Nuclear-magnetic-resonance (NMR) analysis provides the structural basis of F29 specificity for Fyn over homologous SFKs. Using F29, we engineered a sensitive, minimally-perturbing fluorescence-resonance-energy-transfer (FRET) biosensor (FynSensor) that reveals cellular Fyn activity to be spatially localized, pulsatile and sensitive to adhesion/integrin signaling. Strikingly, growth factor stimulation further enhanced Fyn activity in pre-activated intracellular zones. However, inhibition of focal-adhesion-kinase activity not only attenuates Fyn activity, but abolishes growth-factor modulation. FynSensor imaging uncovers spatially organized, sensitized signaling clusters, direct crosstalk between integrin and growth-factor-signaling, and clarifies how compartmentalized Src-kinase activity may drive cell fate.


Sinapic acid attenuates cisplatin-induced nephrotoxicity through peroxisome proliferator-activated receptor gamma agonism in rats.

  • Hardevinder Pal Singh‎ et al.
  • Journal of pharmacy & bioallied sciences‎
  • 2020‎

The aim of this study was to investigate the involvement of peroxisome proliferator-activated receptor gamma (PPAR-γ) in renal protection offered by sinapic acid in cisplatin-induced nephrotoxicity in male rats.


Coriandrum sativum seeds extract mitigate progression of diabetic nephropathy in experimental rats via AGEs inhibition.

  • Anu Kajal‎ et al.
  • PloS one‎
  • 2019‎

Inthe present study, we have demonstrated the phytochemical composition of petroleum ether extract of C. sativum (CPE) seeds by using chromatographic, spectroscopic as well spectrometric analysis. CPE was evaluated for its possible role in mitigation of diabetic nephropathy (DN) in Streptozotocin (STZ)-nicotinamide (NAD) induced type 2 diabetes model. Administration of CPE at doses of 100, 200, and 400 mg/kg for 45 days has produced significant attenuation of elevated biochemical parameters including serum glucose, lipid and creatinine levels. CPE has also reserved albuminuria and elevated creatinine clearance in treated diabetic rats. Advanced glycation end products (AGEs) formation in kidneyswas also considerably reduced along with noteworthy increase in level of superoxide dismutase (SOD), glutathione (GSH), and decrease in lipid peroxidation in terms of thiobarbituric acid reactive species (TBARS). Molecular docking studies were also employed to reveal out the possible mechanism. In conclusion, using STZ-NAD model, we have successfully predicted that by assets of bioactive constituents CPE might inhibit the progression of DN. C. sativum may act as potential adjuvant for antidiabetic therapy and needs to be investigated further.


Ameliorative effect of Cephalandra indica homeopathic preparation in STZ induced diabetic nephropathy rats.

  • Lalit Kishore‎ et al.
  • Journal of Ayurveda and integrative medicine‎
  • 2019‎

Diabetic nephropathy (DN) is the foremost cause of morbidity and has become the most recurrent cause of end-stage renal disease among diabetic patients. Thus, agents having antidiabetic effect along with safety potential in the kidneys would have a higher remedial value.


Biophysical Correlates of Enhanced Immunogenicity of a Stabilized Variant of the Receptor Binding Domain of SARS-CoV-2.

  • Kawkab Kanjo‎ et al.
  • The journal of physical chemistry. B‎
  • 2023‎

The receptor binding domain (RBD) of SARS-CoV-2 is the primary target of neutralizing antibodies. We have previously reported the design and characterization of a mammalian cell expressed RBD derivative, mRBD1-3.2, that has higher thermal stability and greatly enhanced immunogenicity relative to the wild type mRBD. The protein is highly thermotolerant and immunogenic and is being explored for use in room temperature stable Covid-19 vaccine formulations. In the current study, we have investigated the folding pathway of both WT and stabilized RBD. It was found that chemical denaturation of RBD proceeds through a stable equilibrium intermediate. Thermal and chemical denaturation is reversible, as assayed by binding to the receptor ACE2. Unusually, in its native state, RBD binds to the hydrophobic probe ANS, and enhanced ANS binding is observed for the equilibrium intermediate state. Further characterization of the folding of mRBD1-3.2, both in solution and after reconstitution of lyophilized protein stored for a month at 37 °C, revealed a higher stability represented by higher Cm, faster refolding, slower unfolding, and enhanced resistance to proteolytic cleavage relative to WT. In contrast to WT RBD, the mutant showed decreased interaction with the hydrophobic moiety linoleic acid. Collectively, these data suggest that the enhanced immunogenicity results from reduced conformational fluctuations that likely enhance in vivo half-life as well as reduce the exposure of irrelevant non-neutralizing epitopes to the immune system.


Nephroprotective effect of Paeonia emodi via inhibition of advanced glycation end products and oxidative stress in streptozotocin-nicotinamide induced diabetic nephropathy.

  • Lalit Kishore‎ et al.
  • Journal of food and drug analysis‎
  • 2017‎

The present study aimed to evaluate the effect of alcohol (PA) and hydroalcohol (PHA) extract of Paeonia emodi Royale roots in treatment of streptozotocin-nicotinamide induced diabetic nephropathy. Diabetes mellitus was induced in male Wistar rats by streptozotocin (65 mg/kg intraperitoneally) 15 minutes after nicotinamide (230 mg/kg, intraperitoneally) administration and diabetic nephropathy was assessed by measuring serum glucose, renal parameters (urea, uric acid, creatinine, and blood urea nitrogen level) and lipid profile. The rats were treated with different doses of extracts (100 mg/kg, 200 mg/kg, and 400 mg/kg) for 45 days. Oxidative stress was assessed by measuring tissue antioxidant enzymes level along with the formation of advanced glycation end-products (AGEs) in kidney. PA and PHA (400 mg/kg) produced significant attenuation in the serum glucose level (165.08 ± 3.353 mg/dL and 154.27 ± 2.209 mg/dL, respectively) as compared to control. Elevated renal parameters, lipid levels, tissue antioxidant enzymes and AGE formation were also restored in a dose-dependent manner. These findings suggest that by amelioration of oxidative stress and formation of AGEs, PA and PHA significantly inhibited the progression diabetic nephropathy in rats.


Pesticide Residues in Peri-Urban Bovine Milk from India and Risk Assessment: A Multicenter Study.

  • J P S Gill‎ et al.
  • Scientific reports‎
  • 2020‎

Pesticides residue poses serious concerns to human health. The present study was carried out to determine the pesticide residues of peri-urban bovine milk (n = 1183) from five different sites (Bangalore, Bhubaneswar, Guwahati, Ludhiana and Udaipur) in India and dietary exposure risk assessment to adults and children. Pesticide residues were estimated using gas chromatography with flame thermionic and electron capture detectors followed by confirmation on gas chromatography-mass spectrometer. The results noticed the contamination of milk with hexachlorocyclohexane (HCH), dichloro-diphenyl trichloroethane (DDT), endosulfan, cypermethrin, cyhalothrin, permethrin, chlorpyrifos, ethion and profenophos pesticides. The residue levels in some of the milk samples were observed to be higher than the respective maximum residue limits (MRLs) for pesticide. Milk samples contamination was found highest in Bhubaneswar (11.2%) followed by Bangalore (9.3%), Ludhiana (6.9%), Udaipur (6.4%) and Guwahati (6.3%). The dietary risk assessment of pesticides under two scenarios i.e. lower-bound scenario (LB) and upper-bound (UB) revealed that daily intake of pesticides was substantially below the prescribed acceptable daily intake except for fipronil in children at UB. The non-cancer risk by estimation of hazard index (HI) was found to be below the target value of one in adults at all five sites in India. However, for children at the UB level, the HI for lindane, DDT and ethion exceeded the value of one in Ludhiana and Udaipur. Cancer risk for adults was found to be in the recommended range of United States environment protection agency (USEPA), while it exceeded the USEPA values for children.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: