Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 8 papers out of 8 papers

PTPN22 genetic variation: evidence for multiple variants associated with rheumatoid arthritis.

  • Victoria E H Carlton‎ et al.
  • American journal of human genetics‎
  • 2005‎

The minor allele of the R620W missense single-nucleotide polymorphism (SNP) (rs2476601) in the hematopoietic-specific protein tyrosine phosphatase gene, PTPN22, has been associated with multiple autoimmune diseases, including rheumatoid arthritis (RA). These genetic data, combined with biochemical evidence that this SNP affects PTPN22 function, suggest that this phosphatase is a key regulator of autoimmunity. To determine whether other genetic variants in PTPN22 contribute to the development of RA, we sequenced the coding regions of this gene in 48 white North American patients with RA and identified 15 previously unreported SNPs, including 2 coding SNPs in the catalytic domain. We then genotyped 37 SNPs in or near PTPN22 in 475 patients with RA and 475 individually matched controls (sample set 1) and selected a subset of markers for replication in an additional 661 patients with RA and 1,322 individually matched controls (sample set 2). Analyses of these results predict 10 common (frequency >1%) PTPN22 haplotypes in white North Americans. The sole haplotype found to carry the previously identified W620 risk allele was strongly associated with disease in both sample sets, whereas another haplotype, identical at all other SNPs but carrying the R620 allele, showed no association. R620W, however, does not fully explain the association between PTPN22 and RA, since significant differences between cases and controls persisted in both sample sets after the haplotype data were stratified by R620W. Additional analyses identified two SNPs on a single common haplotype that are associated with RA independent of R620W, suggesting that R620W and at least one additional variant in the PTPN22 gene region influence RA susceptibility.


A genomewide single-nucleotide-polymorphism panel for Mexican American admixture mapping.

  • Chao Tian‎ et al.
  • American journal of human genetics‎
  • 2007‎

For admixture mapping studies in Mexican Americans (MAM), we define a genomewide single-nucleotide-polymorphism (SNP) panel that can distinguish between chromosomal segments of Amerindian (AMI) or European (EUR) ancestry. These studies used genotypes for >400,000 SNPs, defined in EUR and both Pima and Mayan AMI, to define a set of ancestry-informative markers (AIMs). The use of two AMI populations was necessary to remove a subset of SNPs that distinguished genotypes of only one AMI subgroup from EUR genotypes. The AIMs set contained 8,144 SNPs separated by a minimum of 50 kb with only three intermarker intervals >1 Mb and had EUR/AMI FST values >0.30 (mean FST = 0.48) and Mayan/Pima FST values <0.05 (mean FST < 0.01). Analysis of a subset of these SNP AIMs suggested that this panel may also distinguish ancestry between EUR and other disparate AMI groups, including Quechuan from South America. We show, using realistic simulation parameters that are based on our analyses of MAM genotyping results, that this panel of SNP AIMs provides good power for detecting disease-associated chromosomal segments for genes with modest ethnicity risk ratios. A reduced set of 5,287 SNP AIMs captured almost the same admixture mapping information, but smaller SNP sets showed substantial drop-off in admixture mapping information and power. The results will enable studies of type 2 diabetes, rheumatoid arthritis, and other diseases among which epidemiological studies suggest differences in the distribution of ancestry-associated susceptibility.


Comprehensive association testing of common mitochondrial DNA variation in metabolic disease.

  • Richa Saxena‎ et al.
  • American journal of human genetics‎
  • 2006‎

Many lines of evidence implicate mitochondria in phenotypic variation: (a) rare mutations in mitochondrial proteins cause metabolic, neurological, and muscular disorders; (b) alterations in oxidative phosphorylation are characteristic of type 2 diabetes, Parkinson disease, Huntington disease, and other diseases; and (c) common missense variants in the mitochondrial genome (mtDNA) have been implicated as having been subject to natural selection for adaptation to cold climates and contributing to "energy deficiency" diseases today. To test the hypothesis that common mtDNA variation influences human physiology and disease, we identified all 144 variants with frequency >1% in Europeans from >900 publicly available European mtDNA sequences and selected 64 tagging single-nucleotide polymorphisms that efficiently capture all common variation (except the hypervariable D-loop). Next, we evaluated the complete set of common mtDNA variants for association with type 2 diabetes in a sample of 3,304 diabetics and 3,304 matched nondiabetic individuals. Association of mtDNA variants with other metabolic traits (body mass index, measures of insulin secretion and action, blood pressure, and cholesterol) was also tested in subsets of this sample. We did not find a significant association of common mtDNA variants with these metabolic phenotypes. Moreover, we failed to identify any physiological effect of alleles that were previously proposed to have been adaptive for energy metabolism in human evolution. More generally, this comprehensive association-testing framework can readily be applied to other diseases for which mitochondrial dysfunction has been implicated.


Genetic interactions drive heterogeneity in causal variant effect sizes for gene expression and complex traits.

  • Roshni A Patel‎ et al.
  • American journal of human genetics‎
  • 2022‎

Despite the growing number of genome-wide association studies (GWASs), it remains unclear to what extent gene-by-gene and gene-by-environment interactions influence complex traits in humans. The magnitude of genetic interactions in complex traits has been difficult to quantify because GWASs are generally underpowered to detect individual interactions of small effect. Here, we develop a method to test for genetic interactions that aggregates information across all trait-associated loci. Specifically, we test whether SNPs in regions of European ancestry shared between European American and admixed African American individuals have the same causal effect sizes. We hypothesize that in African Americans, the presence of genetic interactions will drive the causal effect sizes of SNPs in regions of European ancestry to be more similar to those of SNPs in regions of African ancestry. We apply our method to two traits: gene expression in 296 African Americans and 482 European Americans in the Multi-Ethnic Study of Atherosclerosis (MESA) and low-density lipoprotein cholesterol (LDL-C) in 74K African Americans and 296K European Americans in the Million Veteran Program (MVP). We find significant evidence for genetic interactions in our analysis of gene expression; for LDL-C, we observe a similar point estimate, although this is not significant, most likely due to lower statistical power. These results suggest that gene-by-gene or gene-by-environment interactions modify the effect sizes of causal variants in human complex traits.


Unraveling multiple MHC gene associations with systemic lupus erythematosus: model choice indicates a role for HLA alleles and non-HLA genes in Europeans.

  • David L Morris‎ et al.
  • American journal of human genetics‎
  • 2012‎

We have performed a meta-analysis of the major-histocompatibility-complex (MHC) region in systemic lupus erythematosus (SLE) to determine the association with both SNPs and classical human-leukocyte-antigen (HLA) alleles. More specifically, we combined results from six studies and well-known out-of-study control data sets, providing us with 3,701 independent SLE cases and 12,110 independent controls of European ancestry. This study used genotypes for 7,199 SNPs within the MHC region and for classical HLA alleles (typed and imputed). Our results from conditional analysis and model choice with the use of the Bayesian information criterion show that the best model for SLE association includes both classical loci (HLA-DRB1(∗)03:01, HLA-DRB1(∗)08:01, and HLA-DQA1(∗)01:02) and two SNPs, rs8192591 (in class III and upstream of NOTCH4) and rs2246618 (MICB in class I). Our approach was to perform a stepwise search from multiple baseline models deduced from a priori evidence on HLA-DRB1 lupus-associated alleles, a stepwise regression on SNPs alone, and a stepwise regression on HLA alleles. With this approach, we were able to identify a model that was an overwhelmingly better fit to the data than one identified by simple stepwise regression either on SNPs alone (Bayes factor [BF] > 50) or on classical HLA alleles alone (BF > 1,000).


A genomewide single-nucleotide-polymorphism panel with high ancestry information for African American admixture mapping.

  • Chao Tian‎ et al.
  • American journal of human genetics‎
  • 2006‎

Admixture mapping requires a genomewide panel of relatively evenly spaced markers that can distinguish the ancestral origins of chromosomal segments in admixed individuals. Through use of the results of the International HapMap Project and specific selection criteria, the current study has examined the ability of selected single-nucleotide polymorphisms (SNPs) to extract continental ancestry information in African American subjects and to explore parameters for admixture mapping. Genotyping of two linguistically diverse West African populations (Bini and Kanuri Nigerians, who are Niger-Congo [Bantu] and Nilo-Saharan speakers, respectively), European Americans, and African Americans validated a genomewide set of >4,000 SNP ancestry-informative markers with mean and median F(ST) values >0.59 and mean and median Fisher's information content >2.5. This set of SNPs extracted a larger amount of ancestry information in African Americans than previously reported SNP panels and provides nearly uniform coverage of the genome. Moreover, in the current study, simulations show that this more informative panel improves power for admixture mapping in African Americans when ethnicity risk ratios are modest. This is particularly important in the application of admixture mapping in complex genetic diseases for which only modest ethnicity risk ratios of relevant susceptibility genes are expected.


A missense single-nucleotide polymorphism in a gene encoding a protein tyrosine phosphatase (PTPN22) is associated with rheumatoid arthritis.

  • Ann B Begovich‎ et al.
  • American journal of human genetics‎
  • 2004‎

Rheumatoid arthritis (RA) is the most common systemic autoimmune disease, affecting approximately 1% of the adult population worldwide, with an estimated heritability of 60%. To identify genes involved in RA susceptibility, we investigated the association between putative functional single-nucleotide polymorphisms (SNPs) and RA among white individuals by use of a case-control study design; a second sample was tested for replication. Here we report the association of RA susceptibility with the minor allele of a missense SNP in PTPN22 (discovery-study allelic P=6.6 x 10(-4); replication-study allelic P=5.6 x 10(-8)), which encodes a hematopoietic-specific protein tyrosine phosphatase also known as "Lyp." We show that the risk allele, which is present in approximately 17% of white individuals from the general population and in approximately 28% of white individuals with RA, disrupts the P1 proline-rich motif that is important for interaction with Csk, potentially altering these proteins' normal function as negative regulators of T-cell activation. The minor allele of this SNP recently was implicated in type 1 diabetes, suggesting that the variant phosphatase may increase overall reactivity of the immune system and may heighten an individual carrier's risk for autoimmune disease.


A large-scale genetic association study confirms IL12B and leads to the identification of IL23R as psoriasis-risk genes.

  • Michele Cargill‎ et al.
  • American journal of human genetics‎
  • 2007‎

We performed a multitiered, case-control association study of psoriasis in three independent sample sets of white North American individuals (1,446 cases and 1,432 controls) with 25,215 genecentric single-nucleotide polymorphisms (SNPs) and found a highly significant association with an IL12B 3'-untranslated-region SNP (rs3212227), confirming the results of a small Japanese study. This SNP was significant in all three sample sets (odds ratio [OR](common) 0.64, combined P [Pcomb]=7.85x10(-10)). A Monte Carlo simulation to address multiple testing suggests that this association is not a type I error. The coding regions of IL12B were resequenced in 96 individuals with psoriasis, and 30 additional IL12B-region SNPs were genotyped. Haplotypes were estimated, and genotype-conditioned analyses identified a second risk allele (rs6887695) located approximately 60 kb upstream of the IL12B coding region that exhibited association with psoriasis after adjustment for rs3212227. Together, these two SNPs mark a common IL12B risk haplotype (OR(common) 1.40, Pcomb=8.11x10(-9)) and a less frequent protective haplotype (OR(common) 0.58, Pcomb=5.65x10(-12)), which were statistically significant in all three studies. Since IL12B encodes the common IL-12p40 subunit of IL-12 and IL-23, we individually genotyped 17 SNPs in the genes encoding the other chains of these cytokines (IL12A and IL23A) and their receptors (IL12RB1, IL12RB2, and IL23R). Haplotype analyses identified two IL23R missense SNPs that together mark a common psoriasis-associated haplotype in all three studies (OR(common) 1.44, Pcomb=3.13x10(-6)). Individuals homozygous for both the IL12B and the IL23R predisposing haplotypes have an increased risk of disease (OR(common) 1.66, Pcomb=1.33x10(-8)). These data, and the previous observation that administration of an antibody specific for the IL-12p40 subunit to patients with psoriasis is highly efficacious, suggest that these genes play a fundamental role in psoriasis pathogenesis.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: