Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 20 papers out of 22 papers

The immunobiology of mucosal-associated invariant T cell (MAIT) function in primary biliary cholangitis: Regulation by cholic acid-induced Interleukin-7.

  • Xiang Jiang‎ et al.
  • Journal of autoimmunity‎
  • 2018‎

Mucosal-associated invariant T (MAIT) cells are novel innate-like T cells constituting a significant proportion of circulating and hepatic T cells. Herein, we extensively examine the phenotypical and functional alterations of MAIT cells and their regulation in a cohort of 56 patients with Primary Biliary Cholangitis (PBC) and 53 healthy controls (HC). Additionally alterations of MAIT cells were assessed before and after UDCA treatment. Finally the localization of MAIT cell in liver was examined using specific tetramer staining and the underlying mechanisms of these alterations in PBC were explored. Our data demonstrated that the frequency and number of circulating MAIT cells were decreased, whereas hepatic MAIT cells were increased in PBC compared to HC. Moreover, circulating MAIT cells were more activated in PBC than HC, reflected by elevated expression levels of granzyme B. Six months of UDCA treatment significantly attenuated the circulating MAIT cells differences in PBC. Of note, the expression levels of IL-7 were significantly increased in both plasma and liver from PBC as compared to HC, which promoted the production of inflammatory cytokines and granzyme B by inducing signal transduction and activation of transcription 5 (STAT5) phosphorylation in MAIT cells. Finally, cholic acid, one of the major bile acids in liver, upregulated IL-7 expression in hepatocyte cell line L02 by inducing Farnesoid X Receptor (FXR) binding to the IL-7 promoter. Hence MAIT cells are activated and enriched in the liver of PBC. Cholic acid-induced IL-7 production in hepatocytes plays a critical role in regulating MAIT cell function, highlighting that hepatocytes may bridge cholangiocyte injury and innate immunity through a bile acid signaling pathway.


Increased 5-hydroxymethylcytosine in CD4(+) T cells in systemic lupus erythematosus.

  • Ming Zhao‎ et al.
  • Journal of autoimmunity‎
  • 2016‎

One of the major disappointments in autoimmunity has been the relative lack of informative data when genomewide associations (GWAS) have been applied to patients with systemic lupus erythematosus (SLE). Indeed, there is increasing evidence that SLE is characterized by widespread epigenetic changes. 5-Hydroxymethylcytosine (5-hmC) is a newly discovered modified form of cytosine suspected to be an important epigenetic modification in embryonic development, cell differentiation and cancer. DNA methylation dynamics have already been implicated in the pathogenesis of SLE, while little is known about hydroxymethylation in this process. Here, we show an increased 5-hmC level in genomic DNA in CD4(+) T cells of patients with SLE compared with healthy controls, accompanied by the up-regulated expression of the Ten-eleven translocation TET2 and TET3, which can enzymatically convert 5-methylcytosine (5-mC) to 5-hmC. Moreover, we present the differential patterns of DNA hydroxymethylation in genome-wide promoter regions in SLE CD4(+) T cells compared with healthy controls. We identified 2748 genes with increased 5-hmC levels in promoter regions in SLE CD4(+) T cells, which were enriched in critical pathways, including neurotrophin signaling, WNT signaling, MAPK signaling, calcium signaling and the mTOR signaling pathway. Through a combined analysis of differential DNA hydroxymethylation profile and gene expression profile in SLE CD4(+) T cells, we found 131 genes with the increased 5-hmC in promoter regions and up-regulated expression in SLE CD4(+) T cells compared with healthy controls, including selected immune-related genes, i.e. SOCS1, NR2F6 and IL15RA, which were also confirmed by ChIP-qPCR. Furthermore, we demonstrate that CTCF, as a transcription factor, can mediate DNA hydroxymethylation and contribute to overexpression of SOCS1 in CD4(+) T cells through binding to the promoter region of SOCS1. Taken together, our study reveals a critical differential 5-hmC in the genome-wide promoter regions of SLE CD4(+) T cells and provides a novel mechanism that suggests that DNA hydroxymethylation contributes to the aberrant regulation of genes transcription in the pathogenesis of SLE.


Transcriptome landscape of double negative T cells by single-cell RNA sequencing.

  • Lu Yang‎ et al.
  • Journal of autoimmunity‎
  • 2021‎

CD4 and CD8 coreceptor double negative TCRαβ+ T (DNT) cells are increasingly being recognized for their critical and diverse roles in the immune system. However, their molecular and functional signatures remain poorly understood and controversial. Moreover, the majority of studies are descriptive because of the relative low frequency of cells and non-standardized definition of this lineage. In this study, we performed single-cell RNA sequencing on 28,835 single immune cells isolated from mixed splenocytes of male C57BL/6 mice using strict fluorescence-activated cell sorting. The data was replicated in a subsequent study. Our analysis revealed five transcriptionally distinct naïve DNT cell clusters, which expressed unique sets of genes and primarily performed T helper, cytotoxic and innate immune functions. Anti-CD3/CD28 activation enhanced their T helper and cytotoxic functions. Moreover, in comparison with CD4+, CD8+ T cells and NK cells, Ikzf2 was highly expressed by both naïve and activated cytotoxic DNT cells. In conclusion, we provide a map of the heterogeneity in naïve and active DNT cells, addresses the controversy about DNT cells, and provides potential transcription signatures of DNT cells. The landscape approach herein will eventually become more feasible through newer high throughput methods and will enable clustering data to be fed into a systems analysis approach. Thus the approach should become the "backdrop" of similar studies in the myriad murine models of autoimmunity, potentially highlighting the importance of DNT cells and other minor lineage of cells in immune homeostasis. The clear characterization of functional DNT subsets into helper DNT, cytotoxic DNT and innate DNT will help to better understand the intrinsic roles of different functional DNT subsets in the development and progression of autoimmune diseases and transplant rejection, and thereby may facilitate diagnosis and therapy.


Chemokine receptor CXCR3 deficiency exacerbates murine autoimmune cholangitis by promoting pathogenic CD8+ T cell activation.

  • Hong-Di Ma‎ et al.
  • Journal of autoimmunity‎
  • 2017‎

CXC Chemokine Receptor 3 (CXCR3) is functionally pleiotropic and not only plays an important role in chemotaxis, but also participates in T cell differentiation and may play a critical role in inducing and maintaining immune tolerance. These observations are particularly critical for autoimmune cholangitis in which CXCR3 positive T cells are found around the portal areas of both humans and mouse models of primary biliary cholangitis (PBC). Herein, we investigated the role of CXCR3 in the pathogenesis of autoimmune cholangitis. We have taken advantage of a unique CXCR3 knockout dnTGFβRII mouse to focus on the role of CXCR3, both by direct observation of its influence on the natural course of disease, as well as through adoptive transfer studies into Rag-/- mice. We report herein that not only do CXCR3 deficient mice develop an exacerbation of autoimmune cholangitis associated with an expanded effector memory T cell number, but also selective adoptive transfer of CXCR3 deficient CD8+ T cells induces autoimmune cholangitis. In addition, gene microarray analysis of CXCR3 deficient CD8+ T cells reveal an intense pro-inflammatory profile. Our data suggests that the altered gene profiles induced by CXCR3 deficiency promotes autoimmune cholangitis through pathogenic CD8+ T cells. These data have significance for human PBC and other autoimmune liver diseases in which therapeutic intervention might be directed to chemokines and/or their receptors.


Systems biologic analysis of T regulatory cells genetic pathways in murine primary biliary cirrhosis.

  • Yin-Hu Wang‎ et al.
  • Journal of autoimmunity‎
  • 2015‎

CD4(+)Foxp3(+) regulatory T cells (Tregs) play a non-redundant role in control of excessive immune responses, and defects in Tregs have been shown both in patients and murine models of primary biliary cirrhosis (PBC), a progressive autoimmune biliary disease. Herein, we took advantage of a murine model of PBC, the dominant negative transforming growth factor β receptor II (dnTGFβRII) mice, to assess Treg genetic defects and their functional effects in PBC. By using high-resolution microarrays with verification by PCR and protein expression, we found profound and wide-ranging differences between dnTGFβRII and normal, wild type Tregs. Critical transcription factors were down-regulated including Eos, Ahr, Klf2, Foxp1 in dnTGFβRII Tregs. Functionally, dnTGFβRII Tregs expressed an activated, pro-inflammatory phenotype with upregulation of Ccl5, Granzyme B and IFN-γ. Genetic pathway analysis suggested that the primary effect of loss of TGFβ pathway signaling was to down regulate immune regulatory processes, with a secondary upregulation of inflammatory processes. These findings provide new insights into T regulatory genetic defects; aberrations of the identified genes or genetic pathways should be investigated in human PBC Tregs. This approach which takes advantage of biologic pathway analysis illustrates the ability to identify genes/pathways that are affected both independently and dependent on abnormalities in TGFβ signaling. Such approaches will become increasingly useful in human autoimmunity.


Prevalence of hepatitis C serum antibody in autoimmune diseases.

  • Nancy Agmon-Levin‎ et al.
  • Journal of autoimmunity‎
  • 2009‎

To evaluate the prevalence of serum antibodies against hepatitis C virus and other infectious agents in a large cohort of well-characterized patients with autoimmune diseases (AID).


A comprehensive evaluation of serum autoantibodies in primary biliary cirrhosis.

  • Nancy Agmon-Levin‎ et al.
  • Journal of autoimmunity‎
  • 2010‎

In primary biliary cirrhosis (PBC) serum markers other than anti-mitochondrial antibodies (AMA) are promising in terms of disease severity and comorbidities, as well represented by anti-nuclear antibodies (ANA). The aim of the present study was thus to evaluate the prevalence and clinical significance of a large profile of serum autoantibodies in PBC sera. We utilized 69 sera from European patients with PBC (including 20 AMA-negative) and 297 sera from geographically and sex-matched healthy controls. All sera were tested for the presence of ANA and autoantibodies associated with thrombophilia, vasculitis, and gastrointestinal disease. Autoantibodies other than AMA were detected in 53/69 (76%) PBC sera vs. 105/297 (35%) among controls. The prevalence of ANA (targeting dsDNA, Sm, chromatin, ribosomal-P, RNP, SmRNP, SSA, SSB, and centromere) and thrombophilia-associated autoantibodies (i.e. anti-beta2GPI, phosphatydilserine, prothrombin) was common among patients with PBC. When clinical features were compared, the presence of anti-prothrombin IgM was associated with a worse prognosis as represented by a higher Mayo score. We demonstrate an increased prevalence of ANA and thrombophilia-associated autoantibodies in PBC sera and an association between the latter autoantibodies and PBC stage. The role of thrombophilia-associated antibodies will warrant further studies, based in particular on the incidence of portal hypertension at early stages of PBC.


The genetics of human autoimmune disease: A perspective on progress in the field and future directions.

  • Michael F Seldin‎
  • Journal of autoimmunity‎
  • 2015‎

Progress in defining the genetics of autoimmune disease has been dramatically enhanced by large scale genetic studies. Genome-wide approaches, examining hundreds or for some diseases thousands of cases and controls, have been implemented using high throughput genotyping and appropriate algorithms to provide a wealth of data over the last decade. These studies have identified hundreds of non-HLA loci as well as further defining HLA variations that predispose to different autoimmune diseases. These studies to identify genetic risk loci are also complemented by progress in gene expression studies including definition of expression quantitative trait loci (eQTL), various alterations in chromatin structure including histone marks, DNase I sensitivity, repressed chromatin regions as well as transcript factor binding sites. Integration of this information can partially explain why particular variations can alter proclivity to autoimmune phenotypes. Despite our incomplete knowledge base with only partial definition of hereditary factors and possible functional connections, this progress has and will continue to facilitate a better understanding of critical pathways and critical changes in immunoregulation. Advances in defining and understanding functional variants potentially can lead to both novel therapeutics and personalized medicine in which therapeutic approaches are chosen based on particular molecular phenotypes and genomic alterations.


Hydrophobic bile acids suppress expression of AE2 in biliary epithelial cells and induce bile duct inflammation in primary biliary cholangitis.

  • Satomi Hisamoto‎ et al.
  • Journal of autoimmunity‎
  • 2016‎

Understanding the mechanisms of chronic inflammation in primary biliary cholangitis (PBC) is essential for successful treatment. Earlier work has demonstrated that patients with PBC have reduced expression of the anion exchanger 2 (AE2) on biliary epithelial cells (BEC) and deletion of AE2 gene has led to a PBC-like disorder in mice. To directly address the role of AE2 in preventing PBC pathogenesis, we took advantage of our ability to isolate human BEC and autologous splenic mononuclear cells (SMC). We studied the influence of hydrophobic bile acids, in particular, glycochenodeoxycholic acid (GCDC), on AE2 expression in BEC and the subsequent impact on the phenotypes of BEC and local inflammatory responses. We demonstrate herein that GCDC reduces AE2 expression in BEC through induction of reactive oxygen species (ROS), which enhances senescence of BEC. In addition, a reduction of AE2 levels by either GCDC or another AE2 inhibitor upregulates expression of CD40 and HLA-DR as well as production of IL-6, IL-8 and CXCL10 from BEC in response to toll like receptor ligands, an effect suppressed by inhibition of ROS. Importantly, reduced AE2 expression enhances the migration of autologous splenic mononuclear cells (SMC) towards BEC. In conclusion, our data highlight a key functional role of AE2 in the maintenance of the normal physiology of BEC and the pathogenic consequences of reduced AE2 expression, including abnormal intrinsic characteristics of BEC and their production of signal molecules that lead to the chronic inflammatory responses in small bile ducts.


DNGR1-mediated deletion of A20/Tnfaip3 in dendritic cells alters T and B-cell homeostasis and promotes autoimmune liver pathology.

  • Tridib Das‎ et al.
  • Journal of autoimmunity‎
  • 2019‎

Dendritic cells (DCs) are central regulators of tolerance versus immunity. The outcome depends amongst others on DC subset and activation status. Whereas CD11b+ type 2 conventional DCs (cDC2s) initiate proinflammatory helper T (Th)-cell responses, CD103+ cDC1s are crucial for regulatory T-cell (Treg) induction and CD8+ T-cell activation. DC activation is controlled by the transcription factor NF-κB. Ablation of A20/Tnfaip3, a critical regulator of NF-κB activation, in DCs leads to constitutive DC activation and development of systemic autoimmunity. We hypothesized that the activation status of cDCs controls the development of autoimmunity. To target cDCs, DNGR1(Clec9a)-cre-mediated excision of A20/Tnfaip3 was used through generation of Tnfaip3fl/flxClec9a+/cre (Tnfaip3DNGR1-KO) mice. Immune cell activation was evaluated at 31-weeks of age. We found that DNGR1-cre-mediated deletion of A20/Tnfaip3 resulted in liver pathology characterized by inflammatory infiltrates adjacent to the portal triads. Both cDC subsets as well as monocyte-derived DCs (moDCs) in Tnfaip3DNGR1-KO livers harbored an activated phenotype. Specifically, the costimulatory molecule CD40 in liver cDCs and moDCs was regulated by A20/Tnfaip3 expression. Livers from Tnfaip3DNGR1-KO mice had augmented proportions of Th1, Th17, Treg, and follicular Th (Tfh)-cells compared to control mice, accompanied by an increase in IgA-producing plasma cells. Serum IgA from Tnfaip3DNGR1-KO mice recognized self-proteins, specifically cytoplasmic proteins in liver periportal regions. These data show that enhanced activation of cDCs and moDCs, due to A20/Tnfaip3 ablation, promotes the development of organ-specific autoimmunity but not systemic autoimmunity. This model could be useful to examine the pathobiological processes contributing to autoimmune liver diseases.


Gut microbiota translocation promotes autoimmune cholangitis.

  • Hong-Di Ma‎ et al.
  • Journal of autoimmunity‎
  • 2018‎

Gut microbiota and bacterial translocation have been implicated as significant contributors to mucosal immune responses and tolerance; alteration of microbial molecules, termed pathogen-associated molecular patterns (PAMP) and bacterial translocation are associated with immune pathology. However, the mechanisms by which dysregulated gut microbiota promotes autoimmunity is unclear. We have taken advantage of a well-characterized murine model of primary biliary cholangitis, dnTGFβRII mice, and an additional unique construct, toll-like receptor 2 (TLR2)-deficient dnTGFβRII mice coined dnTGFβRIITLR2-/- mice to investigate the influences of gut microbiota on autoimmune cholangitis. Firstly, we report that dnTGFβRII mice manifest altered composition of gut microbiota and that alteration of this gut microbiota by administration of antibiotics significantly alleviates T-cell-mediated infiltration and bile duct damage. Second, toll-like receptor 2 (TLR2)-deficient dnTGFβRII mice demonstrate significant exacerbation of autoimmune cholangitis when their epithelial barrier integrity was disrupted. Further, TLR2-deficiency mediates downregulated expression of tight junction-associated protein ZO-1 leading to increased gut permeability and bacterial translocation from gut to liver; use of antibiotics reduces microbiota translocation to liver and also decreases biliary pathology. In conclusion, our data demonstrates the important role of gut microbiota and bacterial translocation in the pathogenesis of murine autoimmune cholangitis.


Human liver-resident CD56(bright)/CD16(neg) NK cells are retained within hepatic sinusoids via the engagement of CCR5 and CXCR6 pathways.

  • Kelly Hudspeth‎ et al.
  • Journal of autoimmunity‎
  • 2016‎

The liver-specific natural killer (NK) cell population is critical for local innate immune responses, but the mechanisms that lead to their selective homing and the definition of their functionally relevance remain enigmatic.


Autoimmune cholangitis in NOD.c3c4 mice is associated with cholangiocyte-specific Fas antigen deficiency.

  • Yu Nakagome‎ et al.
  • Journal of autoimmunity‎
  • 2007‎

A major handicap in understanding the pathogenesis of autoimmune cholangitis has been the absence of an informative mouse model. Recently, autoimmune cholangitis, with several features similar to PBC, has been described in NOD.c3c4 mice, including anti-mitochondrial antibodies, lymphocytic portal tract infiltrates, biliary destruction and the adoptive transfer of disease to naïve recipients using liver-derived lymphocytes. A unique feature, and a characteristic quite distinct from human PBC, is the presence of bile cyst formation. We have addressed the issue of cysts in NOD.c3c4 mice by performing comprehensive microarray analysis using cholangiocytes from NOD.c3c4 mice compared to NOD controls. Several key differences in gene expression were noted in NOD.c3c4 cholangiocytes. First, there was consistent impairment in the expression of Fas antigen (CD95). Second, cholangiocytes were PCNA positive but TUNEL negative, suggesting an absence of apoptosis despite abnormal proliferation. In conclusion, we propose that autoimmune cholangitis develops in NOD.c3c4 mice secondary to impaired biliary cell apoptosis with exposure of mitochondrial antigens, loss of tolerance and subsequent development of multi-lineage anti-mitochondrial responses.


Increased levels of chemokine receptor CXCR3 and chemokines IP-10 and MIG in patients with primary biliary cirrhosis and their first degree relatives.

  • Ya-Hui Chuang‎ et al.
  • Journal of autoimmunity‎
  • 2005‎

Infiltrating memory T cells play an important role in the destruction of the biliary tract in primary biliary cirrhosis (PBC) and inflammatory chemokines control lymphocyte traffic through their interactions with T cell chemokine receptors. In the present study, we measured plasma levels of chemokines interferon-gamma-inducible protein-10 (IP-10) and monokine induced by gamma interferon (MIG), and also studied the expression of CXCR3 chemokine receptors in 105 subjects, including 53 patients with PBC, 26 first degree relatives and 26 healthy controls. Interestingly, plasma IP-10 and MIG levels in PBC were increased significantly compared to controls and appeared to increase with disease progression. By immunohistochemistry, IP-10 and MIG expressions were evident in the portal areas in PBC. Further, the frequency of CXCR3-expressing cells in peripheral blood was also significantly higher in PBC, and CXCR3-positive cells were also found in the portal areas of diseased livers, primarily on CD4+ cells. Finally, the daughters and sisters of PBC patients also demonstrated increased plasma levels of IP-10 and MIG, but, in contrast, displayed normal frequency of CXCR3+ expressing peripheral blood lymphocytes. Our data imply a role for specific chemokine-chemokine receptor interactions in the pathogenesis of PBC and also highlight the familial risk factor.


Phylogenetic and immunological definition of four lipoylated proteins from Novosphingobium aromaticivorans, implications for primary biliary cirrhosis.

  • Kerstien A Padgett‎ et al.
  • Journal of autoimmunity‎
  • 2005‎

Novosphingobium aromaticivorans, a unique ubiquitous bacterium that metabolizes xenobiotics and activates environmental estrogens, has been suggested as a pathogenic factor in the development of primary biliary cirrhosis (PBC). To define the molecular basis of PBC sera reactivity, we investigated the characteristic of the bacterial antigens involved. We cloned and sequenced four genes from N. aromaticivorans coding for immunoreactive proteins, arbitrarily named Novo 1 through Novo 4. We subsequently analyzed these proteins for their homology to known mitochondrial proteins and defined their reactivity using monoclonal antibodies (mAbs), rabbit anti-lipoic acid antibody, and PBC/control sera. Moreover, we studied their phylogenetic relation with the known PBC autoantigens. Novo proteins have an extraordinary degree of amino acid homology with all of the major human mitochondrial autoantigens PDC-E2 (Novo 1 and 2), OGDC-E2 (Novo 3), and BCOADC-E2 (Novo 4). Moreover, Novo 1-4 contain a lipoylated domain, are recognized by AMA-positive sera, and react with specific mAbs to mitochondrial antigens. Interestingly, the phylogenetic relation of the proteins emphasizes the conservation of the lipoylated domain. In conclusion, our data provide a high degree of confidence that N. aromaticivorans may potentiate the breakdown of self tolerance in genetically susceptible individuals.


Therapeutic trials of biologics in primary biliary cholangitis: An open label study of abatacept and review of the literature.

  • Christopher L Bowlus‎ et al.
  • Journal of autoimmunity‎
  • 2019‎

Primary biliary cholangitis (PBC) is a classic autoimmune disease in which humoral, cytotoxic, and innate immune responses have been implicated with the specific targeting of a mitochondrial antigen. The mainstay of treatment remains the bile acid ursodeoxycholic acid (UDCA). Corticosteroids may have some benefits, but to date, clinical trials of biologics targeting B cells and IL-12/23 have not shown any efficacy. Because activated T cells target the intrahepatic bile ducts in PBC and pre-clinical models suggested that blocking CD80/CD86 with CTLA-4 Ig might have therapeutic benefit in PBC, we performed an open-label trial to determine if CTLA-4 Ig (abatacept) is safe and potentially efficacious in PBC patients with an incomplete response to UDCA. PBC patients with an alkaline phosphatase (ALP) > 1.67 × the upper limit of normal after 6 months on UDCA treatment or who were intolerant of UDCA received abatacept 125 mg s.q. weekly for 24 weeks. The co-primary endpoint was ALP normalization or a >40% reduction from baseline. Among 16 subjects enrolled and who received at least 1 dose of abatacept, 1 (6.3%) met the co-primary endpoint. Absolute and percent changes in ALP [median (95% CI)] were +2.8 U/L (-90.9-96.6) and -0.28% (-21.1-15.5), respectively. No significant changes were observed in ALP, ALT, total bilirubin, albumin, immunoglobulins, or liver stiffness. Abatacept treatment decreased several non-terminally differentiated CD4+ but not CD8+ T cell populations, including decreases in CD4+ CCR5+ (p = 0.02) and CD4+ PD1+ (p = 0.03) lymphocytes. In contrast there were increases in CD4+ CCR7+ lymphocytes (p = 0.034). Treatment emergent adverse events occurred in 4 subjects. Abatacept was well tolerated in this population of PBC patients but like other biologics in PBC was ineffective in achieving biochemical responses associated with improved clinical outcomes.


Junctional adhesion molecules JAM-B and JAM-C promote autoimmune-mediated liver fibrosis in mice.

  • Edith Hintermann‎ et al.
  • Journal of autoimmunity‎
  • 2018‎

Fibrosis remains a serious health concern in patients with chronic liver disease. We recently reported that chemically induced chronic murine liver injury triggers increased expression of junctional adhesion molecules (JAMs) JAM-B and JAM-C by endothelial cells and de novo synthesis of JAM-C by hepatic stellate cells (HSCs). Here, we demonstrate that biopsies of patients suffering from primary biliary cholangitis (PBC), primary sclerosing cholangitis (PSC) or autoimmune hepatitis (AIH) display elevated levels of JAM-C on portal fibroblasts (PFs), HSCs, endothelial cells and cholangiocytes, whereas smooth muscle cells expressed JAM-C constitutively. Therefore, localization and function of JAM-B and JAM-C were investigated in three mouse models of autoimmune-driven liver inflammation. A PBC-like disease was induced by immunization with 2-octynoic acid-BSA conjugate, which resulted in the upregulation of both JAMs in fibrotic portal triads. Analysis of a murine model of PSC revealed a role of JAM-C in PF cell-cell adhesion and contractility. In mice suffering from AIH, endothelial cells increased JAM-B level and HSCs and capsular fibroblasts became JAM-C-positive. Most importantly, AIH-mediated liver fibrosis was reduced in JAM-B-/- mice or when JAM-C was blocked by soluble recombinant JAM-C. Interestingly, loss of JAM-B/JAM-C function had no effect on leukocyte infiltration, suggesting that the well-documented function of JAMs in leukocyte recruitment to inflamed tissue was not effective in the tested chronic models. This might be different in patients and may even be complicated by the fact that human leukocytes express JAM-C. Our findings delineate JAM-C as a mediator of myofibroblast-operated contraction of the liver capsule, intrahepatic vasoconstriction and bile duct stricture. Due to its potential to interact heterophilically with endothelial JAM-B, JAM-C supports also HSC/PF mural cell function. Together, these properties allow JAM-B and JAM-C to actively participate in vascular remodeling associated with liver/biliary fibrosis and suggest them as valuable targets for anti-fibrosis therapies.


Increased loss of the Y chromosome in peripheral blood cells in male patients with autoimmune thyroiditis.

  • Luca Persani‎ et al.
  • Journal of autoimmunity‎
  • 2012‎

Multiple mechanisms have been proposed to explain the peculiar distribution of autoimmune thyroiditis (AIT) among women and men. Most attention has been focused on the detection of the role of estrogens and the X chromosome. Specifically, a potential role for X haploinsufficiency has been proposed in the female patient population and an association with the disease has been confirmed. Our knowledge of the etiopathogenesis of autoimmunity in male patients remains, however, limited. Next to the possible role of androgens and their imbalances, the Y chromosome appears as a potential candidate for influence of the immune function in men. Herein we analyzed a population of male patients with AIT (n=31) and healthy controls (n=88) to define a potential association of disease and the loss of the Y chromosome. Y chromosome loss increases in AIT compared to unaffected subjects; these phenomenon increases with aging as expected, however, the degree of loss is significantly increased in the patient population compared to the healthy controls. We were, thus, able to confirm the existence of an analogous mechanism in the male population to previously identified X haploinsufficiency in female patients with AIT. We propose that this commonality might represent a relevant feature in the etiopathogenesis of AIT that should be further investigated.


Mincle and human B cell function.

  • Kazuhito Kawata‎ et al.
  • Journal of autoimmunity‎
  • 2012‎

C-type lectin receptors are pattern recognition receptors that are critical for autoimmunity and the immune response. Mincle is a C-type lectin receptor expressed by a variety of antigen presenting cells including macrophages, neutrophils, dendritic cells and B cells; a variety of stimuli including stress are known to induce the expression of Mincle. Mincle is an FcRγ-associated activation receptor that senses damaged cells and upon ligation induces activated macrophages to produce inflammatory cytokines. Recently, while several studies have reported that Mincle plays an important role in macrophage responses to fungal infection its function on B cells remains to be defined. In efforts to elucidate the function of Mincle expressed by B cells, we studied the expression of Mincle on subsets of B cells and analyzed cytokines and synthesized immunoglobulin upon ligation of Mincle. The expression of Mincle on CD27-CD19(+) naïve B cells is significantly higher than CD27 + CD19(+) memory B cells. The stimulation of TLR9 ligand induced Mincle expression on B cells. Furthermore, co-stimulation of TLR9 and Mincle ligand reduced IgG and IgA production from B cells without a significant change in the inflammatory cytokines TNF-α, IL-6, IL-8 and IL-10. Our data identifies Mincle as a potentially critical player in human B cell responses.


Primary biliary cirrhosis is associated with altered hepatic microRNA expression.

  • Kerstien A Padgett‎ et al.
  • Journal of autoimmunity‎
  • 2009‎

MicroRNAs (miRNAs) are small RNA molecules that negatively regulate protein coding gene expression and are thought to play a critical role in many biological processes. Aberrant levels of miRNAs have been associated with numerous diseases and cancers, and as such, miRNAs have gain much interests as diagnostic biomarkers, and as therapeutic targets. However, their role in autoimmunity is largely unknown. The aims of this study are to: (1) identify differentially expressed miRNAs in human primary biliary cirrhosis (PBC); (2) validate these independently; and (3) identify potential targets of differentially expressed miRNAs. We compared the expression of 377 miRNAs in explanted livers form subjects with PBC versus controls with normal liver histology. A total of 35 independent miRNAs were found to be differentially expressed in PBC (p < 0.001). Quantitative PCR was employed to validate down-regulation of microRNA-122a (miR-122a) and miR-26a and the increased expression of miR-328 and miR-299-5p. The predicted targets of these miRNAs are known to affect cell proliferation, apoptosis, inflammation, oxidative stress, and metabolism. Our data are the first to demonstrate that PBC is characterized by altered expression of hepatic miRNA; however additional studies are required to demonstrate a causal link between those miRNA and the development of PBC.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: