Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 4 papers out of 4 papers

Genetic discovery and risk characterization in type 2 diabetes across diverse populations.

  • Linda M Polfus‎ et al.
  • HGG advances‎
  • 2021‎

Genomic discovery and characterization of risk loci for type 2 diabetes (T2D) have been conducted primarily in individuals of European ancestry. We conducted a multiethnic genome-wide association study of T2D among 53,102 cases and 193,679 control subjects from African, Hispanic, Asian, Native Hawaiian, and European population groups in the Population Architecture Genomics and Epidemiology (PAGE) and Diabetes Genetics Replication and Meta-analysis (DIAGRAM) Consortia. In individuals of African ancestry, we discovered a risk variant in the TGFB1 gene (rs11466334, risk allele frequency (RAF) = 6.8%, odds ratio [OR] = 1.27, p = 2.06 × 10-8), which replicated in independent studies of African ancestry (p = 6.26 × 10-23). We identified a multiethnic risk variant in the BACE2 gene (rs13052926, RAF = 14.1%, OR = 1.08, p = 5.75 × 10-9), which also replicated in independent studies (p = 3.45 × 10-4). We also observed a significant difference in the performance of a multiethnic genetic risk score (GRS) across population groups (pheterogeneity = 3.85 × 10-20). Comparing individuals in the top GRS risk category (40%-60%), the OR was highest in Asians (OR = 3.08) and European (OR = 2.94) ancestry populations, followed by Hispanic (OR = 2.39), Native Hawaiian (OR = 2.02), and African ancestry (OR = 1.57) populations. These findings underscore the importance of genetic discovery and risk characterization in diverse populations and the urgent need to further increase representation of non-European ancestry individuals in genetics research to improve genetic-based risk prediction across populations.


Multi-Ancestry Genome-wide Association Study Accounting for Gene-Psychosocial Factor Interactions Identifies Novel Loci for Blood Pressure Traits.

  • Daokun Sun‎ et al.
  • HGG advances‎
  • 2021‎

Psychological and social factors are known to influence blood pressure (BP) and risk of hypertension and associated cardiovascular diseases. To identify novel BP loci, we carried out genome-wide association meta-analyses of systolic, diastolic, pulse, and mean arterial BP taking into account the interaction effects of genetic variants with three psychosocial factors: depressive symptoms, anxiety symptoms, and social support. Analyses were performed using a two-stage design in a sample of up to 128,894 adults from 5 ancestry groups. In the combined meta-analyses of Stages 1 and 2, we identified 59 loci (p value <5e-8), including nine novel BP loci. The novel associations were observed mostly with pulse pressure, with fewer observed with mean arterial pressure. Five novel loci were identified in African ancestry, and all but one showed patterns of interaction with at least one psychosocial factor. Functional annotation of the novel loci supports a major role for genes implicated in the immune response (PLCL2), synaptic function and neurotransmission (LIN7A, PFIA2), as well as genes previously implicated in neuropsychiatric or stress-related disorders (FSTL5, CHODL). These findings underscore the importance of considering psychological and social factors in gene discovery for BP, especially in non-European populations.


Transcriptome prediction performance across machine learning models and diverse ancestries.

  • Paul C Okoro‎ et al.
  • HGG advances‎
  • 2021‎

Transcriptome prediction methods such as PrediXcan and FUSION have become popular in complex trait mapping. Most transcriptome prediction models have been trained in European populations using methods that make parametric linear assumptions like the elastic net (EN). To potentially further optimize imputation performance of gene expression across global populations, we built transcriptome prediction models using both linear and non-linear machine learning (ML) algorithms and evaluated their performance in comparison to EN. We trained models using genotype and blood monocyte transcriptome data from the Multi-Ethnic Study of Atherosclerosis (MESA) comprising individuals of African, Hispanic, and European ancestries and tested them using genotype and whole-blood transcriptome data from the Modeling the Epidemiology Transition Study (METS) comprising individuals of African ancestries. We show that the prediction performance is highest when the training and the testing population share similar ancestries regardless of the prediction algorithm used. While EN generally outperformed random forest (RF), support vector regression (SVR), and K nearest neighbor (KNN), we found that RF outperformed EN for some genes, particularly between disparate ancestries, suggesting potential robustness and reduced variability of RF imputation performance across global populations. When applied to a high-density lipoprotein (HDL) phenotype, we show including RF prediction models in PrediXcan revealed potential gene associations missed by EN models. Therefore, by integrating other ML modeling into PrediXcan and diversifying our training populations to include more global ancestries, we may uncover new genes associated with complex traits.


BinomiRare: A robust test for association of a rare genetic variant with a binary outcome for mixed models and any case-control proportion.

  • Tamar Sofer‎ et al.
  • HGG advances‎
  • 2021‎

Whole-genome sequencing (WGS) and whole-exome sequencing studies have become increasingly available and are being used to identify rare genetic variants associated with health and disease outcomes. Investigators routinely use mixed models to account for genetic relatedness or other clustering variables (e.g., family or household) when testing genetic associations. However, no existing tests of the association of a rare variant with a binary outcome in the presence of correlated data control the type 1 error where there are (1) few individuals harboring the rare allele, (2) a small proportion of cases relative to controls, and (3) covariates to adjust for. Here, we address all three issues in developing a framework for testing rare variant association with a binary trait in individuals harboring at least one risk allele. In this framework, we estimate outcome probabilities under the null hypothesis and then use them, within the individuals with at least one risk allele, to test variant associations. We extend the BinomiRare test, which was previously proposed for independent observations, and develop the Conway-Maxwell-Poisson (CMP) test and study their properties in simulations. We show that the BinomiRare test always controls the type 1 error, while the CMP test sometimes does not. We then use the BinomiRare test to test the association of rare genetic variants in target genes with small-vessel disease (SVD) stroke, short sleep, and venous thromboembolism (VTE), in whole-genome sequence data from the Trans-Omics for Precision Medicine (TOPMed) program.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: