Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 20 papers out of 29 papers

Crosstalk between thyroid hormone receptor and liver X receptor in the regulation of selective Alzheimer's disease indicator-1 gene expression.

  • Emi Ishida‎ et al.
  • PloS one‎
  • 2013‎

Selective Alzheimer's disease (AD) indicator 1 (Seladin-1) has been identified as a gene down-regulated in the degenerated lesions of AD brain. Up-regulation of Seladin-1 reduces the accumulation of β-amyloid and neuronal death. Thyroid hormone (TH) exerts an important effect on the development and maintenance of central nervous systems. In the current study, we demonstrated that Seladin-1 gene and protein expression in the forebrain was increased in thyrotoxic mice compared with that of euthyroid mice. However, unexpectedly, no significant decrease in the gene and protein expression was observed in hypothyroid mice. Interestingly, an agonist of liver X receptor (LXR), TO901317 (TO) administration in vivo increased Seladin-1 gene and protein expression in the mouse forebrain only in a hypothyroid state and in the presence of mutant TR-β, suggesting that LXR-α would compensate for TR-β function to maintain Seladin-1 gene expression in hypothyroidism and resistance to TH. TH activated the mouse Seladin-1 gene promoter (-1936/+21 bp) and site 2 including canonical TH response element (TRE) half-site in the region between -159 and -154 bp is responsible for the positive regulation. RXR-α/TR-β heterodimerization was identified on site 2 by gel-shift assay, and chromatin immunoprecipitation assay revealed the recruitment of TR-β to site 2 and the recruitment was increased upon TH administration. On the other hand, LXR-α utilizes a distinct region from site 2 (-120 to -102 bp) to activate the mouse Seladin-1 gene promoter. Taking these findings together, we concluded that TH up-regulates Seladin-1 gene expression at the transcriptional level and LXR-α maintains the gene expression.


Liver X receptor α is involved in the transcriptional regulation of the 6-phosphofructo-2-kinase/fructose-2,6-bisphosphatase gene.

  • Li-Feng Zhao‎ et al.
  • Diabetes‎
  • 2012‎

The activity of 6-phosphofructo-1-kinase is strictly controlled by fructose-2,6-bisphosphate, the level of which is regulated by another enzyme, 6-phosphofructo-2-kinase/fructose-2,6-bisphosphatase (PFK2/FBP2). PFK2/FBP2 is a bifunctional enzyme, having kinase and phosphatase activities, and regulates both glycolysis and gluconeogenesis. Here, we examined the hormonal regulation of the PFK2/FBP2 gene in vitro using the reporter assay, the electromobility shift assay (EMSA), and the chromatin immunoprecipitation (ChIP) assay in HuH7 cells and also using the mouse liver in vivo. We found that the transcriptional activity of the PFK2/FBP2 gene was stimulated by insulin and inhibited by cAMP and glucocorticoid. Liver X receptor (LXR) α showed a potent and specific stimulatory effect on PFK2/FBP2 gene transcription. Deletion and mutagenesis analyses identified the LXR response element (LXRE) in the 5'-promoter region of the PFK2/FBP2 gene. Binding of LXRα was confirmed by the EMSA and ChIP assay. Endogenous PFK2/FBP2 mRNA in the mouse liver was increased in the fasting/refeeding state compared with the fasting state. Altogether, PFK2/FBP2 gene transcription is found to be regulated in a way that is more similar to other glycolytic enzyme genes than to gluconeogenic genes. Furthermore, our data strongly suggest that LXRα is one of the key regulators of PFK2/FBP2 gene transcription.


Secreted nucleobindin-2 inhibits 3T3-L1 adipocyte differentiation.

  • Yuko Tagaya‎ et al.
  • Protein and peptide letters‎
  • 2012‎

Nucleobindin-2 is a 420 amino acid EF-hand Ca²⁺ binding protein that can be further processed to generate an 82 amino terminal peptide termed Nesfatin-1. To examine the function of secreted Nucleobindin-2 in adipocyte differentiation, cultured 3T3-L1 cells were incubated with either 0 or 100 nM of GST, GST-Nucleobindin-2, prior to and during the initiation of adipocyte differentiation. Nucleobindin-2 treatment decreased neutral lipid accumulation (Oil-Red O staining) and expression of several marker genes for adipocyte differentiation (PPARγ, aP2, and adipsin). When Nucleobindin- 2 was constitutively secreted into cultured medium, cAMP content and insulin stimulated CREB phosphorylation were significantly reduced. On the other hand, intracellularly overexpressed Nucleobindin-2 failed to affect cAMP content and CREB phosphorylation. Taken together, these data indicate that secreted Nucleobindin-2 is a suppressor of adipocyte differentiation through inhibition of cAMP production and insulin signal.


Epigenetic modulation of Fgf21 in the perinatal mouse liver ameliorates diet-induced obesity in adulthood.

  • Xunmei Yuan‎ et al.
  • Nature communications‎
  • 2018‎

The nutritional environment to which animals are exposed in early life can lead to epigenetic changes in the genome that influence the risk of obesity in later life. Here, we demonstrate that the fibroblast growth factor-21 gene (Fgf21) is subject to peroxisome proliferator-activated receptor (PPAR) α-dependent DNA demethylation in the liver during the postnatal period. Reductions in Fgf21 methylation can be enhanced via pharmacologic activation of PPARα during the suckling period. We also reveal that the DNA methylation status of Fgf21, once established in early life, is relatively stable and persists into adulthood. Reduced DNA methylation is associated with enhanced induction of hepatic FGF21 expression after PPARα activation, which may partly explain the attenuation of diet-induced obesity in adulthood. We propose that Fgf21 methylation represents a form of epigenetic memory that persists into adulthood, and it may have a role in the developmental programming of obesity.


Pituitary NR4A1 is negatively regulated by thyroid hormone without direct binding of thyroid hormone receptors on the gene.

  • Takashi Okamura‎ et al.
  • Molecular and cellular endocrinology‎
  • 2018‎

We previously reported that TRH stimulated pituitary TSHβ gene expression via an immediate increase in NR4A1 in thyrotrophs. We demonstrated that NR4A1 mRNA levels are regulated by thyroid hormone. Pituitary NR4A1 mRNA levels were decreased in mice injected with L-T4. NR4A1 promoter activity was increased by the overexpression of TRβs, and these increases were decreased by T3, and the -27∼+152 bp region was responsible for these changes in vitro. An EMSA showed the lack of TRβs-isoforms binding, and a ChIP assay demonstrated the recruitment of TRβs and NCoR in the -147∼+148 bp region in the absence of T3, whereas T3 induced their release. Experiments on the overexpression and knockdown of NCoR, and using the mutant TRs supported the involvement of NCoR in the TR-induced stimulation. These results demonstrate that thyroid hormone down-regulated basal NR4A1 mRNA levels in the pituitary, and the direct binding of TR was not required.


Gender difference in the impact of gynoid and android fat masses on the progression of hepatic steatosis in Japanese patients with type 2 diabetes.

  • Ryotaro Bouchi‎ et al.
  • BMC obesity‎
  • 2017‎

Increased visceral adiposity is strongly associated with non-alcoholic fatty liver disease (NAFLD). However, little attention has been paid to the association between the change in subcutaneous adipose mass and the progression of non-alcoholic fatty liver disease (NAFLD). We aimed to investigate whether increased subcutaneous adipose tissue (gynoid fat mass) could be protective against the progression of NAFLD in Japanese patients with type 2 diabetes.


Ascorbic acid during the suckling period is required for proper DNA demethylation in the liver.

  • Kenichi Kawahori‎ et al.
  • Scientific reports‎
  • 2020‎

Ascorbic acid (AA, vitamin C) serves as a cofactor for ten-eleven translocation (TET) enzymes and induces DNA demethylation in vitro. However, its role in DNA demethylation in vivo remains unclear. We previously reported that DNA demethylation in the mouse liver was enhanced during the suckling period. Therefore, we hypothesized that DNA demethylation is enhanced in an AA-dependent manner during the suckling period. To examine our hypothesis, we employed wild-type (WT) mice, which synthesize AA, and senescence marker protein-30/gluconolactonase (SMP30/GNL) knockout (KO) mice, which cannot synthesize AA, and analyzed the DNA methylation status in the livers of offspring in both the suckling period and adulthood. SMP30/GNL KO offspring showed DNA hypermethylation in the liver possibly due to low plasma and hepatic AA levels during the suckling period despite the administration of rescue-dose AA to dams. Furthermore, DNA hypermethylation of the fibroblast growth factor 21 gene (Fgf21), a PPARα target gene, persisted into adulthood. In contrast, a high-dose AA administration to SMP30/GNL KO dams during the lactation period restored DNA demethylation in the livers of offspring. Even though a slight increase was observed in plasma AA levels with the administration of rescue-dose AA to WT dams during the gestation and lactation periods, DNA demethylation in the livers of offspring was minimally enhanced. The present results demonstrate that AA intake during the suckling period is required for proper DNA demethylation in the liver.


A local translation program regulates centriole amplification in the airway epithelium.

  • Helu Liu‎ et al.
  • Scientific reports‎
  • 2023‎

Biogenesis of organelles requires targeting of a subset of proteins to specific subcellular domains by signal peptides or mechanisms controlling mRNA localization and local translation. How local distribution and translation of specific mRNAs for organelle biogenesis is achieved remains elusive and likely to be dependent on the cellular context. Here we identify Trinucleotide repeat containing-6a (Tnrc6a), a component of the miRNA pathway, distinctively localized to apical granules of differentiating airway multiciliated cells (MCCs) adjacent to centrioles. In spite of being enriched in TNRC6A and the miRNA-binding protein AGO2, they lack enzymes for mRNA degradation. Instead, we found these apical granules enriched in components of the mRNA translation machinery and newly synthesized proteins suggesting that they are specific hubs for target mRNA localization and local translation in MCCs. Consistent with this, Tnrc6a loss of function prevented formation of these granules and led to a broad reduction, rather than stabilization of miRNA targets. These included downregulation of key genes involved in ciliogenesis and was associated with defective multicilia formation both in vivo and in primary airway epithelial cultures. Similar analysis of Tnrc6a disruption in yolk sac showed stabilization of miRNA targets, highlighting the potential diversity of these mechanisms across organs.


An immunostimulatory glycolipid that blocks SARS-CoV-2, RSV, and influenza infections in vivo.

  • Moriya Tsuji‎ et al.
  • Nature communications‎
  • 2023‎

Prophylactic vaccines for SARS-CoV-2 have lowered the incidence of severe COVID-19, but emergence of viral variants that are antigenically distinct from the vaccine strains are of concern and additional, broadly acting preventive approaches are desirable. Here, we report on a glycolipid termed 7DW8-5 that exploits the host innate immune system to enable rapid control of viral infections in vivo. This glycolipid binds to CD1d on antigen-presenting cells and thereby stimulates NKT cells to release a cascade of cytokines and chemokines. The intranasal administration of 7DW8-5 prior to virus exposure significantly blocked infection by three different authentic variants of SARS-CoV-2, as well as by respiratory syncytial virus and influenza virus, in mice or hamsters. We also found that this protective antiviral effect is both host-directed and mechanism-specific, requiring both the CD1d molecule and interferon-[Formula: see text]. A chemical compound like 7DW8-5 that is easy to administer and cheap to manufacture may be useful not only in slowing the spread of COVID-19 but also in responding to future pandemics long before vaccines or drugs are developed.


Haploinsufficient and predominant expression of multiple endocrine neoplasia type 1 (MEN1)-related genes, MLL, p27Kip1 and p18Ink4C in endocrine organs.

  • Ryo Taguchi‎ et al.
  • Biochemical and biophysical research communications‎
  • 2011‎

Multiple endocrine neoplasia type 1 (MEN1) is a rare autosomal dominantly inherited syndrome characterized by parathyroid, gastro-entero-pancreatic and anterior pituitary tumors. Although the tissue selectivity of tumors in specific endocrine organs is the very essence of MEN1, the mechanisms underlying the tissue-selectivity of tumors remain unknown. The product of the Men1 gene, menin, and mixed lineage leukemia (MLL) have been found to cooperatively regulate p27(Kip1)/CDKN1B (p27) and p18(Ink4C)/CDKN2C (p18) genes. However, there are no reports on the tissue distribution of these MEN1-related genes. We investigated the expression of these genes in the endocrine and non-endocrine organs of wild-type, Men1 knockout and MLL knockout mice. Men1 mRNA was expressed at a similar level in endocrine and non-endocrine organs. However, MLL, p27 and p18 mRNAs were predominantly expressed in the endocrine organs. Notably, p27 and MLL mRNAs were expressed in the pituitary gland at levels approximately 12- and 17-fold higher than those in the liver. The heterozygotes of Men1 knockout mice the levels of MLL, p27 and p18 mRNAs did not differ from those in the wild-type mice. In contrast, heterozygotes of MLL knockout mice showed significant reductions in p27 mRNA as well as protein levels in the pituitary and p27 and p18 in the pancreatic islets, but not in the liver. This study demonstrated for the first time the predominant expression MEN1-related genes, particularly MLL and p27, in the endocrine organs, and a tissue-specific haploinsuffiency of MLL, but not menin, may lead to a decrease in levels of p27 and p18 mRNAs in endocrine organs. These findings may provide basic information for understanding the mechanisms of tissue selectivity of the tumorigenesis in patients with MEN1.


Jagged and Delta-like ligands control distinct events during airway progenitor cell differentiation.

  • Maria R Stupnikov‎ et al.
  • eLife‎
  • 2019‎

Notch signaling regulates cell fate selection during development in multiple organs including the lung. Previous studies on the role of Notch in the lung focused mostly on Notch pathway core components or receptor-specific functions. It is unclear, however, how Jagged or Delta-like ligands collectively or individually (Jag1, Jag2, Dll1, Dll4) influence differentiation of airway epithelial progenitors. Using mouse genetic models we show major differences in Jag and Dll in regulation and establishment of cell fate. Jag ligands had a major impact in balancing distinct cell populations in conducting airways, but had no role in the establishment of domains and cellular abundance in the neuroendocrine (NE) microenvironment. Surprisingly, Dll ligands were crucial in restricting cell fate and size of NE bodies and showed an overlapping role with Jag in differentiation of NE-associated secretory (club) cells. These mechanisms may potentially play a role in human conditions that result in aberrant NE differentiation, including NE hyperplasias and cancer.


Generation of functional lungs via conditional blastocyst complementation using pluripotent stem cells.

  • Munemasa Mori‎ et al.
  • Nature medicine‎
  • 2019‎

Millions of people worldwide with incurable end-stage lung disease die because of inadequate treatment options and limited availability of donor organs for lung transplantation1. Current bioengineering strategies to regenerate the lung have not been able to replicate its extraordinary cellular diversity and complex three-dimensional arrangement, which are indispensable for life-sustaining gas exchange2,3. Here we report the successful generation of functional lungs in mice through a conditional blastocyst complementation (CBC) approach that vacates a specific niche in chimeric hosts and allows for initiation of organogenesis by donor mouse pluripotent stem cells (PSCs). We show that wild-type donor PSCs rescued lung formation in genetically defective recipient mouse embryos unable to specify (due to Ctnnb1cnull mutation) or expand (due to Fgfr2cnull mutation) early respiratory endodermal progenitors. Rescued neonates survived into adulthood and had lungs functionally indistinguishable from those of wild-type littermates. Efficient chimera formation and lung complementation required newly developed culture conditions that maintained the developmental potential of the donor PSCs and were associated with global DNA hypomethylation and increased H4 histone acetylation. These results pave the way for the development of new strategies for generating lungs in large animals to enable modeling of human lung disease as well as cell-based therapeutic interventions4-6.


Protection against high-fat diet-induced obesity in Helz2-deficient male mice due to enhanced expression of hepatic leptin receptor.

  • Satoshi Yoshino‎ et al.
  • Endocrinology‎
  • 2014‎

Obesity arises from impaired energy balance, which is centrally coordinated by leptin through activation of the long form of leptin receptor (Leprb). Obesity causes central leptin resistance. However, whether enhanced peripheral leptin sensitivity could overcome central leptin resistance remains obscure. A peripheral metabolic organ targeted by leptin is the liver, with low Leprb expression. We here show that mice fed a high-fat diet (HFD) and obese patients with hepatosteatosis exhibit increased expression of hepatic helicase with zinc finger 2, a transcriptional coactivator (Helz2), which functions as a transcriptional coregulator of several nuclear receptors, including peroxisome proliferator-activated receptor γ in vitro. To explore the physiological importance of Helz2, we generated Helz2-deficient mice and analyzed their metabolic phenotypes. Helz2-deficient mice showing hyperleptinemia associated with central leptin resistance were protected against HFD-induced obesity and had significantly up-regulated hepatic Leprb expression. Helz2 deficiency and adenovirus-mediated liver-specific exogenous Leprb overexpression in wild-type mice significantly stimulated hepatic AMP-activated protein kinase on HFD, whereas Helz2-deficient db/db mice lacking functional Leprb did not. Fatty acid-β oxidation was increased in Helz2-deficeint hepatocytes, and Helz2-deficient mice revealed increased oxygen consumption and decreased respiratory quotient in calorimetry analyses. The enhanced hepatic AMP-activated protein kinase energy-sensing pathway in Helz2-deficient mice ameliorated hyperlipidemia, hepatosteatosis, and insulin resistance by reducing lipogenic gene expression and stimulating lipid-burning gene expression in the liver. These findings together demonstrate that Helz2 deficiency ameliorates HFD-induced metabolic abnormalities by stimulating endogenous hepatic Leprb expression, despite central leptin resistance. Hepatic HELZ2 might be a novel target molecule for the treatment of obesity with hepatosteatosis.


Nesfatin-1 induces the phosphorylation levels of cAMP response element-binding protein for intracellular signaling in a neural cell line.

  • Emi Ishida‎ et al.
  • PloS one‎
  • 2012‎

Nesfatin-1 is a novel anorexic peptide that reduces the food intake of rodents when administered either intraventricularly or intraperitoneally. However, the molecular mechanism of intracellular signaling via Nesfatin-1 is yet to be resolved. In the current study, we investigated the ability of different neuronal cell lines to respond to Nesfatin-1 and further elucidated the signal transduction pathway of Nesfatin-1. To achieve this, we transfected several cell lines with various combinations of reporter vectors containing different kinds of response elements and performed reporter assays with Nesfatin-1, its active midsegment encoding 30 amino acid residues (M30) and M30-derived mutants. Notably, we found that both Nesfatin-1 as well as M30, significantly increased cAMP response element (CRE) reporter activity in a mouse neuroblastoma cell line, NB41A3. An antagonist of Melanocortin 3/4 receptor, SHU9119, aborted the promoter activity, and a mutant M30, which exerts no anorexic effect in vivo did not induce the CRE reporter activity in NB41A3 cells. Western blotting analyses revealed that Nesfatin-1 and M30 significantly increased the phosphorylation levels of CRE-binding protein (CREB), without altering the intracellular cAMP levels. Further, our study showed that a mitogen-activated protein kinase (MAPK) kinase inhibitor and an L-type Calcium (Ca(2+)) channel blocker abolished the M30-induced CREB phosphorylation. Furthermore, the radio-receptor assay revealed that (125)I-Nesfatin-1 binds in a saturable fashion to the membrane fractions of the mouse hypothalamus and NB41A3 cells, with Kd values of 0.79 nM and 0.17 nM, respectively. Collectively, our findings indicate the presence of a Nesfatin-1-specific receptor on the cell surface of NB41A3 cells and mouse hypothalamus. Our study highlights that Nesfatin-1, via its receptor, induces the phosphorylation of CREB, thus activating the intracellular signaling cascade in neurons.


Expression of PTPRO in the interneurons of adult mouse olfactory bulb.

  • Takenori Kotani‎ et al.
  • The Journal of comparative neurology‎
  • 2010‎

PTPRO is a receptor-type protein tyrosine phosphatase (PTP) with a single catalytic domain in its cytoplasmic region and multiple fibronectin type III-like domains in its extracellular region. In the chick, PTPRO mRNA has been shown to be particularly abundant in embryonic brain, and PTPRO is implicated in axon growth and guidance during embryonic development. However, the temporal and spatial expression of PTPRO protein in the mammalian CNS, particularly in the juvenile and adult mammalian brain, has not been evaluated in any detail. By immunohistofluorescence analysis with a monoclonal antibody to PTPRO, we show that PTPRO is widely expressed throughout the mouse brain from embryonic day 16 to postnatal day 1, while expression is largely confined to the olfactory bulb (OB) and olfactory tubercle in the adult brain. In the OB, PTPRO protein is expressed predominantly in the external plexiform layer, the granule cell layer, and the glomerular layer (GL). In these regions, expression of PTPRO is predominant in interneurons such as gamma-aminobutyric acid (GABA)-ergic or calretinin (CR)-positive granule cells. In addition, PTPRO is expressed in GABAergic, CR-positive, tyrosine hydroxylase-positive, or neurocalcin-positive periglomerular cells in the GL. Costaining of PTPRO with other neuronal markers suggests that PTPRO is likely to be localized to the dendrites or dendritic spines of these olfactory interneurons. Thus, PTPRO might participate in regulation of dendritic morphology or synapse formation of interneurons in the adult mouse OB.


E2F4's cytoplasmic role in multiciliogenesis is mediated via an N-terminal domain that binds two components of the centriole replication machinery, Deup1 and SAS6.

  • Renin Hazan‎ et al.
  • Molecular biology of the cell‎
  • 2021‎

Multiciliated cells play critical roles in the airway, reproductive organs, and brain. Generation of multiple cilia requires both activation of a specialized transcriptional program and subsequent massive amplification of centrioles within the cytoplasm. The E2F4 transcription factor is required for both roles and consequently for multiciliogenesis. Here we establish that E2F4 associates with two distinct components of the centriole replication machinery, Deup1 and SAS6, targeting nonhomologous domains in these proteins. We map Deup1 and SAS6 binding to E2F4's N-terminus and show that this domain is sufficient to mediate E2F4's cytoplasmic role in multiciliogenesis. This sequence is highly conserved across the E2F family, but the ability to bind Deup1 and SAS6 is specific to E2F4 and E2F5, consistent with their shared roles in multiciliogenesis. By generating E2F4/E2F1 chimeras, we identify a six-residue motif that is critical for Deup1 and SAS6 binding. We propose that the ability of E2F4 and E2F5 to recruit Deup1 and/or SAS6, and enable centriole replication, contributes to their cytoplasmic roles in multiciliogenesis.


Ratio of visceral-to-subcutaneous fat area predicts cardiovascular events in patients with type 2 diabetes.

  • Tatsuya Fukuda‎ et al.
  • Journal of diabetes investigation‎
  • 2018‎

To investigate whether the ratio of visceral fat area (VFA) to subcutaneous fat area (SFA; V/S ratio) could be predictive of cardiovascular disease (CVD) as compared with VFA or SFA in patients with diabetes.


Transcriptional regulation of the human Liver X Receptor α gene by Hepatocyte Nuclear Factor 4α.

  • Dimitris Theofilatos‎ et al.
  • Biochemical and biophysical research communications‎
  • 2016‎

Liver X Receptors (LXRs) are sterol-activated transcription factors that play major roles in cellular cholesterol homeostasis, HDL biogenesis and reverse cholesterol transport. The aim of the present study was to investigate the mechanisms that control the expression of the human LXRα gene in hepatic cells. A series of reporter plasmids containing consecutive 5' deletions of the hLXRα promoter upstream of the luciferase gene were constructed and the activity of each construct was measured in HepG2 cells. This analysis showed that the activity of the human LXRα promoter was significantly reduced by deleting the -111 to -42 region suggesting the presence of positive regulatory elements in this short proximal fragment. Bioinformatics data including motif search and ChIP-Seq revealed the presence of a potential binding motif for Hepatocyte Nuclear Factor 4 α (HNF-4α) in this area. Overexpression of HNF-4α in HEK 293T cells increased the expression of all LXRα promoter constructs except -42/+384. In line, silencing the expression of endogenous HNF-4α in HepG2 cells was associated with reduced LXRα protein levels and reduced activity of the -111/+384 LXRα promoter but not of the -42/+384 promoter. Using ChiP assays in HepG2 cells combined with DNAP assays we mapped the novel HNF-4α specific binding motif (H4-SBM) in the -50 to -40 region of the human LXRα promoter. A triple mutation in this H4-SBM abolished HNF-4α binding and reduced the activity of the promoter to 65% relative to the wild type. Furthermore, the mutant promoter could not be transactivated by HNF-4α. In conclusion, our data indicate that HNF-4α may have a wider role in cell and plasma cholesterol homeostasis by controlling the expression of LXRα in hepatic cells.


Spatial-Temporal Lineage Restrictions of Embryonic p63+ Progenitors Establish Distinct Stem Cell Pools in Adult Airways.

  • Ying Yang‎ et al.
  • Developmental cell‎
  • 2018‎

Basal cells (BCs) are p63-expressing multipotent progenitors of skin, tracheoesophageal and urinary tracts. p63 is abundant in developing airways; however, it remains largely unclear how embryonic p63+ cells contribute to the developing and postnatal respiratory tract epithelium, and ultimately how they relate to adult BCs. Using lineage-tracing and functional approaches in vivo, we show that p63+ cells arising from the lung primordium are initially multipotent progenitors of airway and alveolar lineages but later become restricted proximally to generate the tracheal adult stem cell pool. In intrapulmonary airways, these cells are maintained immature to adulthood in bronchi, establishing a rare p63+Krt5- progenitor cell population that responds to H1N1 virus-induced severe injury. Intriguingly, this pool includes a CC10 lineage-labeled p63+Krt5- cell subpopulation required for a full H1N1-response. These data elucidate key aspects in the establishment of regionally distinct adult stem cell pools in the respiratory system, potentially with relevance to other organs.


Prominin 1 and Notch regulate ciliary length and dynamics in multiciliated cells of the airway epithelium.

  • Carlos F H Serra‎ et al.
  • iScience‎
  • 2022‎

Differences in ciliary morphology and dynamics among multiciliated cells of the respiratory tract contribute to efficient mucociliary clearance. Nevertheless, little is known about how these phenotypic differences are established. We show that Prominin 1 (Prom1), a transmembrane protein widely used as stem cell marker, is crucial to this process. During airway differentiation, Prom1 becomes restricted to multiciliated cells, where it is expressed at distinct levels along the proximal-distal axis of the airways. Prom1 is induced by Notch in multiciliated cells, and Notch inactivation abolishes this gradient of expression. Prom1 was not required for multicilia formation, but when inactivated resulted in longer cilia that beat at a lower frequency. Disruption of Notch resulted in opposite effects and suggested that Notch fine-tunes Prom1 levels to regulate the multiciliated cell phenotype and generate diversity among these cells. This mechanism could contribute to the innate defense of the lung and help prevent pulmonary disease.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: