Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 20 papers out of 23 papers

De Novo Truncating Variants in SON Cause Intellectual Disability, Congenital Malformations, and Failure to Thrive.

  • Mari J Tokita‎ et al.
  • American journal of human genetics‎
  • 2016‎

SON is a key component of the spliceosomal complex and a critical mediator of constitutive and alternative splicing. Additionally, SON has been shown to influence cell-cycle progression, genomic integrity, and maintenance of pluripotency in stem cell populations. The clear functional relevance of SON in coordinating essential cellular processes and its presence in diverse human tissues suggests that intact SON might be crucial for normal growth and development. However, the phenotypic effects of deleterious germline variants in SON have not been clearly defined. Herein, we describe seven unrelated individuals with de novo variants in SON and propose that deleterious variants in SON are associated with a severe multisystem disorder characterized by developmental delay, persistent feeding difficulties, and congenital malformations, including brain anomalies.


Dual Molecular Effects of Dominant RORA Mutations Cause Two Variants of Syndromic Intellectual Disability with Either Autism or Cerebellar Ataxia.

  • Claire Guissart‎ et al.
  • American journal of human genetics‎
  • 2018‎

RORα, the RAR-related orphan nuclear receptor alpha, is essential for cerebellar development. The spontaneous mutant mouse staggerer, with an ataxic gait caused by neurodegeneration of cerebellar Purkinje cells, was discovered two decades ago to result from homozygous intragenic Rora deletions. However, RORA mutations were hitherto undocumented in humans. Through a multi-centric collaboration, we identified three copy-number variant deletions (two de novo and one dominantly inherited in three generations), one de novo disrupting duplication, and nine de novo point mutations (three truncating, one canonical splice site, and five missense mutations) involving RORA in 16 individuals from 13 families with variable neurodevelopmental delay and intellectual disability (ID)-associated autistic features, cerebellar ataxia, and epilepsy. Consistent with the human and mouse data, disruption of the D. rerio ortholog, roraa, causes significant reduction in the size of the developing cerebellum. Systematic in vivo complementation studies showed that, whereas wild-type human RORA mRNA could complement the cerebellar pathology, missense variants had two distinct pathogenic mechanisms of either haploinsufficiency or a dominant toxic effect according to their localization in the ligand-binding or DNA-binding domains, respectively. This dichotomous direction of effect is likely relevant to the phenotype in humans: individuals with loss-of-function variants leading to haploinsufficiency show ID with autistic features, while individuals with de novo dominant toxic variants present with ID, ataxia, and cerebellar atrophy. Our combined genetic and functional data highlight the complex mutational landscape at the human RORA locus and suggest that dual mutational effects likely determine phenotypic outcome.


Germline variants in tumor suppressor FBXW7 lead to impaired ubiquitination and a neurodevelopmental syndrome.

  • Sarah E M Stephenson‎ et al.
  • American journal of human genetics‎
  • 2022‎

Neurodevelopmental disorders are highly heterogenous conditions resulting from abnormalities of brain architecture and/or function. FBXW7 (F-box and WD-repeat-domain-containing 7), a recognized developmental regulator and tumor suppressor, has been shown to regulate cell-cycle progression and cell growth and survival by targeting substrates including CYCLIN E1/2 and NOTCH for degradation via the ubiquitin proteasome system. We used a genotype-first approach and global data-sharing platforms to identify 35 individuals harboring de novo and inherited FBXW7 germline monoallelic chromosomal deletions and nonsense, frameshift, splice-site, and missense variants associated with a neurodevelopmental syndrome. The FBXW7 neurodevelopmental syndrome is distinguished by global developmental delay, borderline to severe intellectual disability, hypotonia, and gastrointestinal issues. Brain imaging detailed variable underlying structural abnormalities affecting the cerebellum, corpus collosum, and white matter. A crystal-structure model of FBXW7 predicted that missense variants were clustered at the substrate-binding surface of the WD40 domain and that these might reduce FBXW7 substrate binding affinity. Expression of recombinant FBXW7 missense variants in cultured cells demonstrated impaired CYCLIN E1 and CYCLIN E2 turnover. Pan-neuronal knockdown of the Drosophila ortholog, archipelago, impaired learning and neuronal function. Collectively, the data presented herein provide compelling evidence of an F-Box protein-related, phenotypically variable neurodevelopmental disorder associated with monoallelic variants in FBXW7.


PTPN11 Mosaicism Causes a Spectrum of Pigmentary and Vascular Neurocutaneous Disorders and Predisposes to Melanoma.

  • Satyamaanasa Polubothu‎ et al.
  • The Journal of investigative dermatology‎
  • 2023‎

Phakomatosis pigmentovascularis is a diagnosis that denotes the coexistence of pigmentary and vascular birthmarks of specific types, accompanied by variable multisystem involvement, including CNS disease, asymmetrical growth, and a predisposition to malignancy. Using a tight phenotypic group and high-depth next-generation sequencing of affected tissues, we discover here clonal mosaic variants in gene PTPN11 encoding SHP2 phosphatase as a cause of phakomatosis pigmentovascularis type III or spilorosea. Within an individual, the same variant is found in distinct pigmentary and vascular birthmarks and is undetectable in blood. We go on to show that the same variants can cause either the pigmentary or vascular phenotypes alone, and drive melanoma development within pigmentary lesions. Protein structure modeling highlights that although variants lead to loss of function at the level of the phosphatase domain, resultant conformational changes promote longer ligand binding. In vitro modeling of the missense variants confirms downstream MAPK pathway overactivation and widespread disruption of human endothelial cell angiogenesis. Importantly, patients with PTPN11 mosaicism theoretically risk passing on the variant to their children as the germline RASopathy Noonan syndrome with lentigines. These findings improve our understanding of the pathogenesis and biology of nevus spilus and capillary malformation syndromes, paving the way for better clinical management.


Germline AGO2 mutations impair RNA interference and human neurological development.

  • Davor Lessel‎ et al.
  • Nature communications‎
  • 2020‎

ARGONAUTE-2 and associated miRNAs form the RNA-induced silencing complex (RISC), which targets mRNAs for translational silencing and degradation as part of the RNA interference pathway. Despite the essential nature of this process for cellular function, there is little information on the role of RISC components in human development and organ function. We identify 13 heterozygous mutations in AGO2 in 21 patients affected by disturbances in neurological development. Each of the identified single amino acid mutations result in impaired shRNA-mediated silencing. We observe either impaired RISC formation or increased binding of AGO2 to mRNA targets as mutation specific functional consequences. The latter is supported by decreased phosphorylation of a C-terminal serine cluster involved in mRNA target release, increased formation of dendritic P-bodies in neurons and global transcriptome alterations in patient-derived primary fibroblasts. Our data emphasize the importance of gene expression regulation through the dynamic AGO2-RNA association for human neuronal development.


Loss of FOCAD, operating via the SKI messenger RNA surveillance pathway, causes a pediatric syndrome with liver cirrhosis.

  • Ricardo Moreno Traspas‎ et al.
  • Nature genetics‎
  • 2022‎

Cirrhosis is usually a late-onset and life-threatening disease characterized by fibrotic scarring and inflammation that disrupts liver architecture and function. While it is typically the result of alcoholism or hepatitis viral infection in adults, its etiology in infants is much less understood. In this study, we report 14 children from ten unrelated families presenting with a syndromic form of pediatric liver cirrhosis. By genome/exome sequencing, we found recessive variants in FOCAD segregating with the disease. Zebrafish lacking focad phenocopied the human disease, revealing a signature of altered messenger RNA (mRNA) degradation processes in the liver. Using patient's primary cells and CRISPR-Cas9-mediated inactivation in human hepatic cell lines, we found that FOCAD deficiency compromises the SKI mRNA surveillance pathway by reducing the levels of the RNA helicase SKIC2 and its cofactor SKIC3. FOCAD knockout hepatocytes exhibited lowered albumin expression and signs of persistent injury accompanied by CCL2 overproduction. Our results reveal the importance of FOCAD in maintaining liver homeostasis and disclose a possible therapeutic intervention point via inhibition of the CCL2/CCR2 signaling axis.


The clinical significance of small copy number variants in neurodevelopmental disorders.

  • Reza Asadollahi‎ et al.
  • Journal of medical genetics‎
  • 2014‎

Despite abundant evidence for pathogenicity of large copy number variants (CNVs) in neurodevelopmental disorders (NDDs), the individual significance of genome-wide rare CNVs <500 kb has not been well elucidated in a clinical context.


Haploinsufficiency of the Sin3/HDAC corepressor complex member SIN3B causes a syndromic intellectual disability/autism spectrum disorder.

  • Xenia Latypova‎ et al.
  • American journal of human genetics‎
  • 2021‎

Proteins involved in transcriptional regulation harbor a demonstrated enrichment of mutations in neurodevelopmental disorders. The Sin3 (Swi-independent 3)/histone deacetylase (HDAC) complex plays a central role in histone deacetylation and transcriptional repression. Among the two vertebrate paralogs encoding the Sin3 complex, SIN3A variants cause syndromic intellectual disability, but the clinical consequences of SIN3B haploinsufficiency in humans are uncharacterized. Here, we describe a syndrome hallmarked by intellectual disability, developmental delay, and dysmorphic facial features with variably penetrant autism spectrum disorder, congenital malformations, corpus callosum defects, and impaired growth caused by disruptive SIN3B variants. Using chromosomal microarray or exome sequencing, and through international data sharing efforts, we identified nine individuals with heterozygous SIN3B deletion or single-nucleotide variants. Five individuals harbor heterozygous deletions encompassing SIN3B that reside within a ∼230 kb minimal region of overlap on 19p13.11, two individuals have a rare nonsynonymous substitution, and two individuals have a single-nucleotide deletion that results in a frameshift and predicted premature termination codon. To test the relevance of SIN3B impairment to measurable aspects of the human phenotype, we disrupted the orthologous zebrafish locus by genome editing and transient suppression. The mutant and morphant larvae display altered craniofacial patterning, commissural axon defects, and reduced body length supportive of an essential role for Sin3 function in growth and patterning of anterior structures. To investigate further the molecular consequences of SIN3B variants, we quantified genome-wide enhancer and promoter activity states by using H3K27ac ChIP-seq. We show that, similar to SIN3A mutations, SIN3B disruption causes hyperacetylation of a subset of enhancers and promoters in peripheral blood mononuclear cells. Together, these data demonstrate that SIN3B haploinsufficiency leads to a hitherto unknown intellectual disability/autism syndrome, uncover a crucial role of SIN3B in the central nervous system, and define the epigenetic landscape associated with Sin3 complex impairment.


Haploinsufficiency of the Notch Ligand DLL1 Causes Variable Neurodevelopmental Disorders.

  • Björn Fischer-Zirnsak‎ et al.
  • American journal of human genetics‎
  • 2019‎

Notch signaling is an established developmental pathway for brain morphogenesis. Given that Delta-like 1 (DLL1) is a ligand for the Notch receptor and that a few individuals with developmental delay, intellectual disability, and brain malformations have microdeletions encompassing DLL1, we hypothesized that insufficiency of DLL1 causes a human neurodevelopmental disorder. We performed exome sequencing in individuals with neurodevelopmental disorders. The cohort was identified using known Matchmaker Exchange nodes such as GeneMatcher. This method identified 15 individuals from 12 unrelated families with heterozygous pathogenic DLL1 variants (nonsense, missense, splice site, and one whole gene deletion). The most common features in our cohort were intellectual disability, autism spectrum disorder, seizures, variable brain malformations, muscular hypotonia, and scoliosis. We did not identify an obvious genotype-phenotype correlation. Analysis of one splice site variant showed an in-frame insertion of 12 bp. In conclusion, heterozygous DLL1 pathogenic variants cause a variable neurodevelopmental phenotype and multi-systemic features. The clinical and molecular data support haploinsufficiency as a mechanism for the pathogenesis of this DLL1-related disorder and affirm the importance of DLL1 in human brain development.


De novo and inherited variants in ZNF292 underlie a neurodevelopmental disorder with features of autism spectrum disorder.

  • Ghayda M Mirzaa‎ et al.
  • Genetics in medicine : official journal of the American College of Medical Genetics‎
  • 2020‎

Intellectual disability (ID) and autism spectrum disorder (ASD) are genetically heterogeneous neurodevelopmental disorders. We sought to delineate the clinical, molecular, and neuroimaging spectrum of a novel neurodevelopmental disorder caused by variants in the zinc finger protein 292 gene (ZNF292).


Variable neurodevelopmental and morphological phenotypes of carriers with 12q12 duplications.

  • Lynnea Myers‎ et al.
  • Molecular genetics & genomic medicine‎
  • 2020‎

Variable size deletions affecting 12q12 have been found in individuals with neurodevelopmental disorders (NDDs) and distinct facial and physical features. For many genetic loci affected by deletions in individuals with NDDs, reciprocal duplications have been described. However, for the 12q12 region, there are no detailed descriptions of duplication cases in the literature.


Genetic and phenotypic dissection of 1q43q44 microdeletion syndrome and neurodevelopmental phenotypes associated with mutations in ZBTB18 and HNRNPU.

  • Christel Depienne‎ et al.
  • Human genetics‎
  • 2017‎

Subtelomeric 1q43q44 microdeletions cause a syndrome associating intellectual disability, microcephaly, seizures and anomalies of the corpus callosum. Despite several previous studies assessing genotype-phenotype correlations, the contribution of genes located in this region to the specific features of this syndrome remains uncertain. Among those, three genes, AKT3, HNRNPU and ZBTB18 are highly expressed in the brain and point mutations in these genes have been recently identified in children with neurodevelopmental phenotypes. In this study, we report the clinical and molecular data from 17 patients with 1q43q44 microdeletions, four with ZBTB18 mutations and seven with HNRNPU mutations, and review additional data from 37 previously published patients with 1q43q44 microdeletions. We compare clinical data of patients with 1q43q44 microdeletions with those of patients with point mutations in HNRNPU and ZBTB18 to assess the contribution of each gene as well as the possibility of epistasis between genes. Our study demonstrates that AKT3 haploinsufficiency is the main driver for microcephaly, whereas HNRNPU alteration mostly drives epilepsy and determines the degree of intellectual disability. ZBTB18 deletions or mutations are associated with variable corpus callosum anomalies with an incomplete penetrance. ZBTB18 may also contribute to microcephaly and HNRNPU to thin corpus callosum, but with a lower penetrance. Co-deletion of contiguous genes has additive effects. Our results confirm and refine the complex genotype-phenotype correlations existing in the 1qter microdeletion syndrome and define more precisely the neurodevelopmental phenotypes associated with genetic alterations of AKT3, ZBTB18 and HNRNPU in humans.


De Novo Mutations in Protein Kinase Genes CAMK2A and CAMK2B Cause Intellectual Disability.

  • Sébastien Küry‎ et al.
  • American journal of human genetics‎
  • 2017‎

Calcium/calmodulin-dependent protein kinase II (CAMK2) is one of the first proteins shown to be essential for normal learning and synaptic plasticity in mice, but its requirement for human brain development has not yet been established. Through a multi-center collaborative study based on a whole-exome sequencing approach, we identified 19 exceedingly rare de novo CAMK2A or CAMK2B variants in 24 unrelated individuals with intellectual disability. Variants were assessed for their effect on CAMK2 function and on neuronal migration. For both CAMK2A and CAMK2B, we identified mutations that decreased or increased CAMK2 auto-phosphorylation at Thr286/Thr287. We further found that all mutations affecting auto-phosphorylation also affected neuronal migration, highlighting the importance of tightly regulated CAMK2 auto-phosphorylation in neuronal function and neurodevelopment. Our data establish the importance of CAMK2A and CAMK2B and their auto-phosphorylation in human brain function and expand the phenotypic spectrum of the disorders caused by variants in key players of the glutamatergic signaling pathway.


Comprehensive study of 28 individuals with SIN3A-related disorder underscoring the associated mild cognitive and distinctive facial phenotype.

  • Meena Balasubramanian‎ et al.
  • European journal of human genetics : EJHG‎
  • 2021‎

Witteveen-Kolk syndrome (OMIM 613406) is a recently defined neurodevelopmental syndrome caused by heterozygous loss-of-function variants in SIN3A. We define the clinical and neurodevelopmental phenotypes related to SIN3A-haploinsufficiency in 28 unreported patients. Patients with SIN3A variants adversely affecting protein function have mild intellectual disability, growth and feeding difficulties. Involvement of a multidisciplinary team including a geneticist, paediatrician and neurologist should be considered in managing these patients. Patients described here were identified through a combination of clinical evaluation and gene matching strategies (GeneMatcher and Decipher). All patients consented to participate in this study. Mean age of this cohort was 8.2 years (17 males, 11 females). Out of 16 patients ≥ 8 years old assessed, eight (50%) had mild intellectual disability (ID), four had moderate ID (22%), and one had severe ID (6%). Four (25%) did not have any cognitive impairment. Other neurological symptoms such as seizures (4/28) and hypotonia (12/28) were common. Behaviour problems were reported in a minority. In patients ≥2 years, three were diagnosed with Autism Spectrum Disorder (ASD) and four with Attention Deficit Hyperactivity Disorder (ADHD). We report 27 novel variants and one previously reported variant. 24 were truncating variants; three were missense variants and one large in-frame gain including exons 10-12.


Pathogenic DDX3X Mutations Impair RNA Metabolism and Neurogenesis during Fetal Cortical Development.

  • Ashley L Lennox‎ et al.
  • Neuron‎
  • 2020‎

De novo germline mutations in the RNA helicase DDX3X account for 1%-3% of unexplained intellectual disability (ID) cases in females and are associated with autism, brain malformations, and epilepsy. Yet, the developmental and molecular mechanisms by which DDX3X mutations impair brain function are unknown. Here, we use human and mouse genetics and cell biological and biochemical approaches to elucidate mechanisms by which pathogenic DDX3X variants disrupt brain development. We report the largest clinical cohort to date with DDX3X mutations (n = 107), demonstrating a striking correlation between recurrent dominant missense mutations, polymicrogyria, and the most severe clinical outcomes. We show that Ddx3x controls cortical development by regulating neuron generation. Severe DDX3X missense mutations profoundly disrupt RNA helicase activity, induce ectopic RNA-protein granules in neural progenitors and neurons, and impair translation. Together, these results uncover key mechanisms underlying DDX3X syndrome and highlight aberrant RNA metabolism in the pathogenesis of neurodevelopmental disease.


De Novo Disruption of the Proteasome Regulatory Subunit PSMD12 Causes a Syndromic Neurodevelopmental Disorder.

  • Sébastien Küry‎ et al.
  • American journal of human genetics‎
  • 2017‎

Degradation of proteins by the ubiquitin-proteasome system (UPS) is an essential biological process in the development of eukaryotic organisms. Dysregulation of this mechanism leads to numerous human neurodegenerative or neurodevelopmental disorders. Through a multi-center collaboration, we identified six de novo genomic deletions and four de novo point mutations involving PSMD12, encoding the non-ATPase subunit PSMD12 (aka RPN5) of the 19S regulator of 26S proteasome complex, in unrelated individuals with intellectual disability, congenital malformations, ophthalmologic anomalies, feeding difficulties, deafness, and subtle dysmorphic facial features. We observed reduced PSMD12 levels and an accumulation of ubiquitinated proteins without any impairment of proteasome catalytic activity. Our PSMD12 loss-of-function zebrafish CRISPR/Cas9 model exhibited microcephaly, decreased convolution of the renal tubules, and abnormal craniofacial morphology. Our data support the biological importance of PSMD12 as a scaffolding subunit in proteasome function during development and neurogenesis in particular; they enable the definition of a neurodevelopmental disorder due to PSMD12 variants, expanding the phenotypic spectrum of UPS-dependent disorders.


Rare variants in the genetic background modulate cognitive and developmental phenotypes in individuals carrying disease-associated variants.

  • Lucilla Pizzo‎ et al.
  • Genetics in medicine : official journal of the American College of Medical Genetics‎
  • 2019‎

To assess the contribution of rare variants in the genetic background toward variability of neurodevelopmental phenotypes in individuals with rare copy-number variants (CNVs) and gene-disruptive variants.


Spliceosome malfunction causes neurodevelopmental disorders with overlapping features.

  • Dong Li‎ et al.
  • The Journal of clinical investigation‎
  • 2024‎

Pre-mRNA splicing is a highly coordinated process. While its dysregulation has been linked to neurological deficits, our understanding of the underlying molecular and cellular mechanisms remains limited. We implicated pathogenic variants in U2AF2 and PRPF19, encoding spliceosome subunits in neurodevelopmental disorders (NDDs), by identifying 46 unrelated individuals with 23 de novo U2AF2 missense variants (including 7 recurrent variants in 30 individuals) and 6 individuals with de novo PRPF19 variants. Eight U2AF2 variants dysregulated splicing of a model substrate. Neuritogenesis was reduced in human neurons differentiated from human pluripotent stem cells carrying two U2AF2 hyper-recurrent variants. Neural loss of function (LoF) of the Drosophila orthologs U2af50 and Prp19 led to lethality, abnormal mushroom body (MB) patterning, and social deficits, which were differentially rescued by wild-type and mutant U2AF2 or PRPF19. Transcriptome profiling revealed splicing substrates or effectors (including Rbfox1, a third splicing factor), which rescued MB defects in U2af50-deficient flies. Upon reanalysis of negative clinical exomes followed by data sharing, we further identified 6 patients with NDD who carried RBFOX1 missense variants which, by in vitro testing, showed LoF. Our study implicates 3 splicing factors as NDD-causative genes and establishes a genetic network with hierarchy underlying human brain development and function.


Treg depletion followed by intracerebral CpG-ODN injection induce brain tumor rejection.

  • Ulrich Jarry‎ et al.
  • Journal of neuroimmunology‎
  • 2014‎

Using brain lymphoma model, we demonstrate that immunotherapy combining Treg depletion (using anti-CD25 mAb PC61) followed by intracranial CpG-ODN administration induced tumor rejection in all treated mice and led to the establishment of a memory antitumor immune response in 60% of them. This protective effect was associated with a recruitment of NK cells and, to a lesser extent, of dendritic cells, B cells and T lymphocytes. NK cell depletion abolished the protective effect of the treatment, confirming a major role of NK cells in brain tumor elimination. Each treatment used alone failed to protect brain tumor bearing mice, revealing the therapeutic benefit of combining Treg depletion and local CpG-ODN injection.


Further corroboration of distinct functional features in SCN2A variants causing intellectual disability or epileptic phenotypes.

  • Anaïs Begemann‎ et al.
  • Molecular medicine (Cambridge, Mass.)‎
  • 2019‎

Deleterious variants in the voltage-gated sodium channel type 2 (Nav1.2) lead to a broad spectrum of phenotypes ranging from benign familial neonatal-infantile epilepsy (BFNIE), severe developmental and epileptic encephalopathy (DEE) and intellectual disability (ID) to autism spectrum disorders (ASD). Yet, the underlying mechanisms are still incompletely understood.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: