Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 20 papers out of 29 papers

Stroke infarct volume estimation in fixed tissue: Comparison of diffusion kurtosis imaging to diffusion weighted imaging and histology in a rodent MCAO model.

  • Vibeke Bay‎ et al.
  • PloS one‎
  • 2018‎

Diffusion kurtosis imaging (DKI) is a new promising MRI technique with microstructural sensitivity superior to conventional diffusion tensor (DTI) based methods. In stroke, considerable mismatch exists between the infarct lesion outline obtained from the two methods, kurtosis and diffusion tensor derived metrics. We aim to investigate if this mismatch can be examined in fixed tissue. Our investigation is based on estimates of mean diffusivity (MD) and mean (of the) kurtosis tensor (MKT) obtained using recent fast DKI methods requiring only 19 images. At 24 hours post stroke, rat brains were fixed and prepared. The infarct was clearly visible in both MD and MKT maps. The MKT lesion volume was roughly 31% larger than the MD lesion volume. Subsequent histological analysis (hematoxylin) revealed similar lesion volumes to MD. Our study shows that structural components underlying the MD/MKT mismatch can be investigated in fixed tissue and therefore allows a more direct comparison between lesion volumes from MRI and histology. Additionally, the larger MKT infarct lesion indicates that MKT do provide increased sensitivity to microstructural changes in the lesion area compared to MD.


Diffusion time dependence, power-law scaling, and exchange in gray matter.

  • Jonas L Olesen‎ et al.
  • NeuroImage‎
  • 2022‎

Characterizing neural tissue microstructure is a critical goal for future neuroimaging. Diffusion MRI (dMRI) provides contrasts that reflect diffusing spins' interactions with myriad microstructural features of biological systems. However, the specificity of dMRI remains limited due to the ambiguity of its signals vis-à-vis the underlying microstructure. To improve specificity, biophysical models of white matter (WM) typically express dMRI signals according to the Standard Model (SM) and have more recently in gray matter (GM) taken spherical compartments into account (the SANDI model) in attempts to represent cell soma. The validity of the assumptions underlying these models, however, remains largely undetermined, especially in GM. To validate these assumptions experimentally, observing their unique, functional properties, such as the b-1/2 power-law associated with one-dimensional diffusion, has emerged as a fruitful strategy. The absence of this signature in GM, in turn, has been explained by neurite water exchange, non-linear morphology, and/or by obscuring soma signal contributions. Here, we present diffusion simulations in realistic neurons demonstrating that curvature and branching does not destroy the stick power-law behavior in impermeable neurites, but also that their signal is drowned by the soma signal under typical experimental conditions. Nevertheless, by studying the GM dMRI signal's behavior as a function of diffusion weighting as well as time, we identify an attainable experimental regime in which the neurite signal dominates. Furthermore, we find that exchange-driven time dependence produces a signal behavior opposite to that which would be expected from restricted diffusion, thereby providing a functional signature that disambiguates the two effects. We present data from dMRI experiments in ex vivo rat brain at ultrahigh field of 16.4T and observe a time dependence that is consistent with substantial exchange but also with a GM stick power-law. The first finding suggests significant water exchange between neurites and the extracellular space while the second suggests a small sub-population of impermeable neurites. To quantify these observations, we harness the Kärger exchange model and incorporate the corresponding signal time dependence in the SM and SANDI models.


Optogenetic activation of striatal D1R and D2R cells differentially engages downstream connected areas beyond the basal ganglia.

  • Christina Grimm‎ et al.
  • Cell reports‎
  • 2021‎

The basal ganglia (BG) are a group of subcortical nuclei responsible for motor and executive function. Central to BG function are striatal cells expressing D1 (D1R) and D2 (D2R) dopamine receptors. D1R and D2R cells are considered functional antagonists that facilitate voluntary movements and inhibit competing motor patterns, respectively. However, whether they maintain a uniform function across the striatum and what influence they exert outside the BG is unclear. Here, we address these questions by combining optogenetic activation of D1R and D2R cells in the mouse ventrolateral caudoputamen with fMRI. Striatal D1R/D2R stimulation evokes distinct activity within the BG-thalamocortical network and differentially engages cerebellar and prefrontal regions. Computational modeling of effective connectivity confirms that changes in D1R/D2R output drive functional relationships between these regions. Our results suggest a complex functional organization of striatal D1R/D2R cells and hint toward an interconnected fronto-BG-cerebellar network modulated by striatal D1R and D2R cells.


Intrinsic macroscale oscillatory modes driving long range functional connectivity in female rat brains detected by ultrafast fMRI.

  • Joana Cabral‎ et al.
  • Nature communications‎
  • 2023‎

Spontaneous fluctuations in functional magnetic resonance imaging (fMRI) signals correlate across distant brain areas, shaping functionally relevant intrinsic networks. However, the generative mechanism of fMRI signal correlations, and in particular the link with locally-detected ultra-slow oscillations, are not fully understood. To investigate this link, we record ultrafast ultrahigh field fMRI signals (9.4 Tesla, temporal resolution = 38 milliseconds) from female rats across three anesthesia conditions. Power at frequencies extending up to 0.3 Hz is detected consistently across rat brains and is modulated by anesthesia level. Principal component analysis reveals a repertoire of modes, in which transient oscillations organize with fixed phase relationships across distinct cortical and subcortical structures. Oscillatory modes are found to vary between conditions, resonating at faster frequencies under medetomidine sedation and reducing both in number, frequency, and duration with the addition of isoflurane. Peaking in power within clear anatomical boundaries, these oscillatory modes point to an emergent systemic property. This work provides additional insight into the origin of oscillations detected in fMRI and the organizing principles underpinning spontaneous long-range functional connectivity.


High-Resolution 3D in vivo Brain Diffusion Tensor Imaging at Ultrahigh Fields: Following Maturation on Juvenile and Adult Mice.

  • Maxime Yon‎ et al.
  • Frontiers in neuroscience‎
  • 2020‎

Diffusion tensor imaging (DTI) is a well-established technique for mapping brain microstructure and white matter tracts in vivo. High resolution DTI, however, is usually associated with low intrinsic sensitivity and therefore long acquisition times. By increasing sensitivity, high magnetic fields can alleviate these demands, yet high fields are also typically associated with significant susceptibility-induced image distortions. This study explores the potential arising from employing new pulse sequences and emerging hardware at ultrahigh fields, to overcome these limitations. To this end, a 15.2 T MRI instrument equipped with a cryocooled surface transceiver coil was employed, and DTI experiments were compared between SPatiotemporal ENcoding (SPEN), a technique that tolerates well susceptibility-induced image distortions, and double-sampled Spin-Echo Echo-Planar Imaging (SE-EPI) methods. Following optimization, SE-EPI afforded whole brain DTI maps at 135 μm isotropic resolution that possessed higher signal-to-noise ratios (SNRs) than SPEN counterparts. SPEN, however, was a better alternative to SE-EPI when focusing on challenging regions of the mouse brain -including the olfactory bulb and the cerebellum. In these instances, the higher robustness of fully refocused SPEN acquisitions coupled to its built-in zooming abilities, provided in vivo DTI maps with 75 μm nominal isotropic spatial resolution. These DTI maps, and in particular the mean diffusion direction (MDD) details, exhibited variations that matched very well the anatomical features known from histological brain Atlases. Using these capabilities, the development of the olfactory bulb (OB) in live mice was followed from week 1 post-partum, until adulthood. The diffusivity of this organ showed a systematic decrease in its overall isotropic value and increase in its fractional anisotropy with age; this maturation was observed for all regions used in the OB's segmentation but was most evident for the lobules' centers, in particular for the granular cell layer. The complexity of the OB neuronal connections also increased during maturation, as evidenced by the growth in directionalities arising in the mean diffusivity direction maps.


High temporal resolution functional magnetic resonance spectroscopy in the mouse upon visual stimulation.

  • Clémence Ligneul‎ et al.
  • NeuroImage‎
  • 2021‎

Functional magnetic resonance spectroscopy (fMRS) quantifies metabolic variations upon presentation of a stimulus and can therefore provide complementary information compared to activity inferred from functional magnetic resonance imaging (fMRI). Improving the temporal resolution of fMRS can be beneficial to clinical applications where detailed information on metabolism can assist the characterization of brain function in healthy and sick populations as well as for neuroscience applications where information on the nature of the underlying activity could be potentially gained. Furthermore, fMRS with higher temporal resolution could benefit basic studies on animal models of disease and for investigating brain function in general. However, to date, fMRS has been limited to sustained periods of activation which risk adaptation and other undesirable effects. Here, we performed fMRS experiments in the mouse with high temporal resolution (12 s), and show the feasibility of such an approach for reliably quantifying metabolic variations upon activation. We detected metabolic variations in the superior colliculus of mice subjected to visual stimulation delivered in a block paradigm at 9.4 T. A robust modulation of glutamate is observed on the average time course, on the difference spectra and on the concentration distributions during active and recovery periods. A general linear model is used for the statistical analysis, and for exploring the nature of the modulation. Changes in NAAG, PCr and Cr levels were also detected. A control experiment with no stimulation reveals potential metabolic signal "drifts" that are not correlated with the functional activity, which should be taken into account when analyzing fMRS data in general. Our findings are promising for future applications of fMRS.


Multiple Myeloma-Derived Extracellular Vesicles Modulate the Bone Marrow Immune Microenvironment.

  • Raquel Lopes‎ et al.
  • Frontiers in immunology‎
  • 2022‎

Multiple myeloma (MM), the third most frequent hematological cancer worldwide, is characterized by the proliferation of neoplastic plasma cells in the bone marrow (BM). One of the hallmarks of MM is a permissive BM microenvironment. Increasing evidence suggests that cell-to-cell communication between myeloma and immune cells via tumor cell-derived extracellular vesicles (EV) plays a key role in the pathogenesis of MM. Hence, we aimed to explore BM immune alterations induced by MM-derived EV. For this, we inoculated immunocompetent BALB/cByJ mice with a myeloma cell line, MOPC315.BM, inducing a MM phenotype. Upon tumor establishment, characterization of the BM microenvironment revealed the expression of both activation and suppressive markers by lymphocytes, such as granzyme B and PD-1, respectively. In addition, conditioning of the animals with MOPC315.BM-derived EV, before transplantation of the MOPC315.BM tumor cells, did not anticipate the disease phenotype. However, it induced features of suppression in the BM milieu, such as an increase in PD-1 expression by CD4+ T cells. Overall, our findings reveal the involvement of MOPC315.BM-derived EV protein content as promoters of immune niche remodeling, strengthening the importance of assessing the mechanisms by which MM may impact the immune microenvironment.


Extensive topographic remapping and functional sharpening in the adult rat visual pathway upon first visual experience.

  • Joana Carvalho‎ et al.
  • PLoS biology‎
  • 2023‎

Understanding the dynamics of stability/plasticity balances during adulthood is pivotal for learning, disease, and recovery from injury. However, the brain-wide topography of sensory remapping remains unknown. Here, using a first-of-its-kind setup for delivering patterned visual stimuli in a rodent magnetic resonance imaging (MRI) scanner, coupled with biologically inspired computational models, we noninvasively mapped brain-wide properties-receptive fields (RFs) and spatial frequency (SF) tuning curves-that were insofar only available from invasive electrophysiology or optical imaging. We then tracked the RF dynamics in the chronic visual deprivation model (VDM) of plasticity and found that light exposure progressively promoted a large-scale topographic remapping in adult rats. Upon light exposure, the initially unspecialized visual pathway progressively evidenced sharpened RFs (smaller and more spatially selective) and enhanced SF tuning curves. Our findings reveal that visual experience following VDM reshapes both structure and function of the visual system and shifts the stability/plasticity balance in adults.


A rapid-onset diffusion functional MRI signal reflects neuromorphological coupling dynamics.

  • Daniel Nunes‎ et al.
  • NeuroImage‎
  • 2021‎

Functional Magnetic Resonance Imaging (fMRI) has transformed our understanding of brain function in-vivo. However, the neurovascular coupling mechanisms underlying fMRI are somewhat "distant" from neural activity. Interestingly, evidence from Intrinsic Optical Signals (IOSs) indicates that neural activity is also coupled to (sub)cellular morphological modulations. Diffusion-weighted functional MRI (dfMRI) experiments have been previously proposed to probe such neuromorphological couplings, but the underlying mechanisms have remained highly contested. Here, we provide the first direct link between in vivo ultrafast dfMRI signals upon rat forepaw stimulation and IOSs in acute slices stimulated optogenetically. We reveal a hitherto unreported rapid onset (<100 ms) dfMRI signal component which (i) agrees with fast-rising IOSs dynamics; (ii) evidences a punctate quantitative correspondence to the stimulation period; and (iii) is rather insensitive to a vascular challenge. Our findings suggest that neuromorphological coupling can be detected via dfMRI signals, auguring well for future mapping of neural activity more directly compared with blood-oxygenation-level-dependent mechanisms.


Double oscillating diffusion encoding and sensitivity to microscopic anisotropy.

  • Andrada Ianuş‎ et al.
  • Magnetic resonance in medicine‎
  • 2017‎

To introduce a novel diffusion pulse sequence, namely double oscillating diffusion encoding (DODE), and to investigate whether it adds sensitivity to microscopic diffusion anisotropy (µA) compared to the well-established double diffusion encoding (DDE) methodology.


Diffusion tensor imaging detects early cerebral cortex abnormalities in neuronal architecture induced by bilateral neonatal enucleation: an experimental model in the ferret.

  • Andrew S Bock‎ et al.
  • Frontiers in systems neuroscience‎
  • 2010‎

Diffusion tensor imaging (DTI) is a technique that non-invasively provides quantitative measures of water translational diffusion, including fractional anisotropy (FA), that are sensitive to the shape and orientation of cellular elements, such as axons, dendrites and cell somas. For several neurodevelopmental disorders, histopathological investigations have identified abnormalities in the architecture of pyramidal neurons at early stages of cerebral cortex development. To assess the potential capability of DTI to detect neuromorphological abnormalities within the developing cerebral cortex, we compare changes in cortical FA with changes in neuronal architecture and connectivity induced by bilateral enucleation at postnatal day 7 (BEP7) in ferrets. We show here that the visual callosal pattern in BEP7 ferrets is more irregular and occupies a significantly greater cortical area compared to controls at adulthood. To determine whether development of the cerebral cortex is altered in BEP7 ferrets in a manner detectable by DTI, cortical FA was compared in control and BEP7 animals on postnatal day 31. Visual cortex, but not rostrally adjacent non-visual cortex, exhibits higher FA than control animals, consistent with BEP7 animals possessing axonal and dendritic arbors of reduced complexity than age-matched controls. Subsequent to DTI, Golgi-staining and analysis methods were used to identify regions, restricted to visual areas, in which the orientation distribution of neuronal processes is significantly more concentrated than in control ferrets. Together, these findings suggest that DTI can be of utility for detecting abnormalities associated with neurodevelopmental disorders at early stages of cerebral cortical development, and that the neonatally enucleated ferret is a useful animal model system for systematically assessing the potential of this new diagnostic strategy.


Diffusion-weighted MRI and quantitative biophysical modeling of hippocampal neurite loss in chronic stress.

  • Peter Vestergaard-Poulsen‎ et al.
  • PloS one‎
  • 2011‎

Chronic stress has detrimental effects on physiology, learning and memory and is involved in the development of anxiety and depressive disorders. Besides changes in synaptic formation and neurogenesis, chronic stress also induces dendritic remodeling in the hippocampus, amygdala and the prefrontal cortex. Investigations of dendritic remodeling during development and treatment of stress are currently limited by the invasive nature of histological and stereological methods. Here we show that high field diffusion-weighted MRI combined with quantitative biophysical modeling of the hippocampal dendritic loss in 21 day restraint stressed rats highly correlates with former histological findings. Our study strongly indicates that diffusion-weighted MRI is sensitive to regional dendritic loss and thus a promising candidate for non-invasive studies of dendritic plasticity in chronic stress and stress-related disorders.


Diffusion Kurtosis Imaging maps neural damage in the EAE model of multiple sclerosis.

  • Andrey Chuhutin‎ et al.
  • NeuroImage‎
  • 2020‎

Diffusion kurtosis imaging (DKI) is an imaging modality that yields novel disease biomarkers and in combination with nervous tissue modeling, provides access to microstructural parameters. Recently, DKI and subsequent estimation of microstructural model parameters has been used for assessment of tissue changes in neurodegenerative diseases and associated animal models. In this study, mouse spinal cords from the experimental autoimmune encephalomyelitis (EAE) model of multiple sclerosis (MS) were investigated for the first time using DKI in combination with biophysical modeling to study the relationship between microstructural metrics and degree of animal dysfunction. Thirteen spinal cords were extracted from animals with varied grades of disability and scanned in a high-field MRI scanner along with five control specimen. Diffusion weighted data were acquired together with high resolution T2* images. Diffusion data were fit to estimate diffusion and kurtosis tensors and white matter modeling parameters, which were all used for subsequent statistical analysis using a linear mixed effects model. T2* images were used to delineate focal demyelination/inflammation. Our results reveal a strong relationship between disability and measured microstructural parameters in normal appearing white matter and gray matter. Relationships between disability and mean of the kurtosis tensor, radial kurtosis, radial diffusivity were similar to what has been found in other hypomyelinating MS models, and in patients. However, the changes in biophysical modeling parameters and in particular in extra-axonal axial diffusivity were clearly different from previous studies employing other animal models of MS. In conclusion, our data suggest that DKI and microstructural modeling can provide a unique contrast capable of detecting EAE-specific changes correlating with clinical disability.


Glucose fluxes in glycolytic and oxidative pathways detected in vivo by deuterium magnetic resonance spectroscopy reflect proliferation in mouse glioblastoma.

  • Rui V Simões‎ et al.
  • NeuroImage. Clinical‎
  • 2022‎

Glioblastoma multiforme (GBM), the most aggressive glial brain tumors, can metabolize glucose through glycolysis and mitochondrial oxidation pathways. While specific dependencies on those pathways are increasingly associated with treatment response, detecting such GBM subtypes in vivo remains elusive. Here, we develop a dynamic glucose-enhanced deuterium spectroscopy (DGE 2H-MRS) approach for differentially assessing glucose turnover rates through glycolysis and mitochondrial oxidation in mouse GBM and explore their association with histologic features of the tumor and its microenvironment.


Temporal Diffusion Ratio (TDR) for imaging restricted diffusion: Optimisation and pre-clinical demonstration.

  • William Warner‎ et al.
  • NeuroImage‎
  • 2023‎

Temporal Diffusion Ratio (TDR) is a recently proposed dMRI technique (Dell'Acqua et al., proc. ISMRM 2019) which provides contrast between areas with restricted diffusion and areas either without restricted diffusion or with length scales too small for characterisation. Hence, it has a potential for informing on pore sizes, in particular the presence of large axon diameters or other cellular structures. TDR employs the signal from two dMRI acquisitions obtained with the same, large, b-value but with different diffusion gradient waveforms. TDR is advantageous as it employs standard acquisition sequences, does not make any assumptions on the underlying tissue structure and does not require any model fitting, avoiding issues related to model degeneracy. This work for the first time introduces and optimises the TDR method in simulation for a range of different tissues and scanner constraints and validates it in a pre-clinical demonstration. We consider both substrates containing cylinders and spherical structures, representing cell soma in tissue. Our results show that contrasting an acquisition with short gradient duration, short diffusion time and high gradient strength with an acquisition with long gradient duration, long diffusion time and low gradient strength, maximises the TDR contrast for a wide range of pore configurations. Additionally, in the presence of Rician noise, computing TDR from a subset (50% or fewer) of the acquired diffusion gradients rather than the entire shell as proposed originally further improves the contrast. In the last part of the work the results are demonstrated experimentally on rat spinal cord. In line with simulations, the experimental data shows that optimised TDR improves the contrast compared to non-optimised TDR. Furthermore, we find a strong correlation between TDR and histology measurements of axon diameter. In conclusion, we find that TDR has great potential and is a very promising alternative (or potentially complement) to model-based approaches for informing on pore sizes and restricted diffusion in general.


Nonivasive quantification of axon radii using diffusion MRI.

  • Jelle Veraart‎ et al.
  • eLife‎
  • 2020‎

Axon caliber plays a crucial role in determining conduction velocity and, consequently, in the timing and synchronization of neural activation. Noninvasive measurement of axon radii could have significant impact on the understanding of healthy and diseased neural processes. Until now, accurate axon radius mapping has eluded in vivo neuroimaging, mainly due to a lack of sensitivity of the MRI signal to micron-sized axons. Here, we show how - when confounding factors such as extra-axonal water and axonal orientation dispersion are eliminated - heavily diffusion-weighted MRI signals become sensitive to axon radii. However, diffusion MRI is only capable of estimating a single metric, the effective radius, representing the entire axon radius distribution within a voxel that emphasizes the larger axons. Our findings, both in rodents and humans, enable noninvasive mapping of critical information on axon radii, as well as resolve the long-standing debate on whether axon radii can be quantified.


On the generalizability of diffusion MRI signal representations across acquisition parameters, sequences and tissue types: Chronicles of the MEMENTO challenge.

  • Alberto De Luca‎ et al.
  • NeuroImage‎
  • 2021‎

Diffusion MRI (dMRI) has become an invaluable tool to assess the microstructural organization of brain tissue. Depending on the specific acquisition settings, the dMRI signal encodes specific properties of the underlying diffusion process. In the last two decades, several signal representations have been proposed to fit the dMRI signal and decode such properties. Most methods, however, are tested and developed on a limited amount of data, and their applicability to other acquisition schemes remains unknown. With this work, we aimed to shed light on the generalizability of existing dMRI signal representations to different diffusion encoding parameters and brain tissue types. To this end, we organized a community challenge - named MEMENTO, making available the same datasets for fair comparisons across algorithms and techniques. We considered two state-of-the-art diffusion datasets, including single-diffusion-encoding (SDE) spin-echo data from a human brain with over 3820 unique diffusion weightings (the MASSIVE dataset), and double (oscillating) diffusion encoding data (DDE/DODE) of a mouse brain including over 2520 unique data points. A subset of the data sampled in 5 different voxels was openly distributed, and the challenge participants were asked to predict the remaining part of the data. After one year, eight participant teams submitted a total of 80 signal fits. For each submission, we evaluated the mean squared error, the variance of the prediction error and the Bayesian information criteria. The received submissions predicted either multi-shell SDE data (37%) or DODE data (22%), followed by cartesian SDE data (19%) and DDE (18%). Most submissions predicted the signals measured with SDE remarkably well, with the exception of low and very strong diffusion weightings. The prediction of DDE and DODE data seemed more challenging, likely because none of the submissions explicitly accounted for diffusion time and frequency. Next to the choice of the model, decisions on fit procedure and hyperparameters play a major role in the prediction performance, highlighting the importance of optimizing and reporting such choices. This work is a community effort to highlight strength and limitations of the field at representing dMRI acquired with trending encoding schemes, gaining insights into how different models generalize to different tissue types and fiber configurations over a large range of diffusion encodings.


The CONNECT project: Combining macro- and micro-structure.

  • Yaniv Assaf‎ et al.
  • NeuroImage‎
  • 2013‎

In recent years, diffusion MRI has become an extremely important tool for studying the morphology of living brain tissue, as it provides unique insights into both its macrostructure and microstructure. Recent applications of diffusion MRI aimed to characterize the structural connectome using tractography to infer connectivity between brain regions. In parallel to the development of tractography, additional diffusion MRI based frameworks (CHARMED, AxCaliber, ActiveAx) were developed enabling the extraction of a multitude of micro-structural parameters (axon diameter distribution, mean axonal diameter and axonal density). This unique insight into both tissue microstructure and connectivity has enormous potential value in understanding the structure and organization of the brain as well as providing unique insights to abnormalities that underpin disease states. The CONNECT (Consortium Of Neuroimagers for the Non-invasive Exploration of brain Connectivity and Tracts) project aimed to combine tractography and micro-structural measures of the living human brain in order to obtain a better estimate of the connectome, while also striving to extend validation of these measurements. This paper summarizes the project and describes the perspective of using micro-structural measures to study the connectome.


Incomplete initial nutation diffusion imaging: An ultrafast, single-scan approach for diffusion mapping.

  • Andrada Ianuş‎ et al.
  • Magnetic resonance in medicine‎
  • 2018‎

Diffusion MRI is confounded by the need to acquire at least two images separated by a repetition time, thereby thwarting the detection of rapid dynamic microstructural changes. The issue is exacerbated when diffusivity variations are accompanied by rapid changes in T2 . The purpose of the present study is to accelerate diffusion MRI acquisitions such that both reference and diffusion-weighted images necessary for quantitative diffusivity mapping are acquired in a single-shot experiment.


Correlation tensor magnetic resonance imaging.

  • Rafael Neto Henriques‎ et al.
  • NeuroImage‎
  • 2020‎

Diffusional Kurtosis Magnetic Resonance Imaging (DKI) quantifies the extent of non-Gaussian water diffusion, which has been shown to be a sensitive biomarker for microstructure in health and disease. However, DKI is not specific to any microstructural property per se since kurtosis may emerge from several different sources. Q-space trajectory encoding schemes have been proposed for decoupling kurtosis arising from the variance of mean diffusivities (isotropic kurtosis) from kurtosis driven by microscopic anisotropy (anisotropic kurtosis). Still, these methods assume that the system is comprised of multiple Gaussian diffusion components with vanishing intra-compartmental kurtosis (associated with restricted diffusion). Here, we develop a more general framework for resolving the underlying kurtosis sources without relying on the multiple Gaussian diffusion approximation. We introduce Correlation Tensor MRI (CTI) - an approach harnessing the versatility of double diffusion encoding (DDE) and its sensitivity to displacement correlation tensors capable of explicitly decoupling isotropic and anisotropic kurtosis components from intra-compartmental kurtosis effects arising from restricted (and time-dependent) diffusion. Additionally, we show that, by subtracting these isotropic and anisotropic kurtosis components from the total diffusional kurtosis, CTI provides an index that is potentially sensitive to intra-compartmental kurtosis. The theoretical foundations of CTI, as well as the first proof-of-concept CTI experiments in ex vivo mouse brains at ultrahigh field of 16.4 T, are presented. We find that anisotropic and isotropic kurtosis can decouple microscopic anisotropy from substantial partial volume effects between tissue and free water. Our intra-compartmental kurtosis index exhibited positive values in both white and grey matter tissues. Simulations in different synthetic microenvironments show, however, that our current CTI protocol for estimating intra-compartmental kurtosis is limited by higher order terms that were not taken into account in this study. CTI measurements were then extended to in vivo settings and used to map heathy rat brains at 9.4 T. These in vivo CTI results were found to be consistent with our ex vivo findings. Although future studies are still required to assess and mitigate the higher order effects on the intra-compartmental kurtosis index, our results show that CTI's more general estimates of anisotropic and isotropic kurtosis contributions are already ripe for future in vivo studies, which can have significant impact our understanding of the mechanisms underlying diffusion metrics extracted in health and disease.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: