Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 5 papers out of 5 papers

Interleukin-6 downregulation with mesenchymal stem cell differentiation results in loss of immunoprivilege.

  • Peng Li‎ et al.
  • Journal of cellular and molecular medicine‎
  • 2013‎

Allogeneic mesenchymal stem cell (MSC) transplantation improves cardiac function, but cellular differentiation results in loss of immunoprivilege and rejection. To explore the mechanism involved in this immune rejection, we investigated the influence of interleukin-6 (IL-6), a factor secreted by MSCs, on immune privilege after myogenic, endothelial and smooth muscle cell differentiation induced by 5-azacytidine, VEGF, and transforming growth factor-β (TGF-β), respectively. Both RT-PCR and ELISA showed that myogenic differentiation of MSCs was associated with significant downregulation of IL-6 expression (P < 0.01), which was also observed following endothelial (P < 0.01) and smooth muscle cell differentiation (P < 0.05), indicating that IL-6 downregulation was dependent on differentiation but not cell phenotype. Flow cytometry demonstrated that IL-6 downregulation as a result of myogenic differentiation was associated with increased leucocyte-mediated cell death in an allogeneic leucocyte co-culture study (P < 0.01). The allogeneic reactivity associated with IL-6 downregulation was also observed following MSC differentiation to endothelial and smooth muscle cells (P < 0.01), demonstrating that leucocyte-mediated cytotoxicity was also dependent on differentiation but not cell phenotype. Restoration of IL-6 partially rescued the differentiated cells from leucocyte-mediated cell death. These findings suggest that rejection of allogeneic MSCs after implantation may be because of a reduction in cellular IL-6 levels, and restoration of IL-6 may be a new target to retain MSC immunoprivilege.


Evidence for the existence of CD34+ angiogenic stem cells in human first-trimester decidua and their therapeutic for ischaemic heart disease.

  • Long Bai‎ et al.
  • Journal of cellular and molecular medicine‎
  • 2020‎

Stem cell transplantation is nearly available for clinical application in the treatment of ischaemic heart disease (IHD), where it may be joined traditional methods (intervention and surgery). The angiogenic ability of seed cells is essential for this applicability. The aim of this study was to reveal the presence of CD34+ angiogenic stem cells in human decidua at the first trimester and to use their strong angiogenic capacity in the treatment of IHD. In vitro, human decidual CD34+ (dCD34+ ) cells from the first trimester have strong proliferation and clonality abilities. After ruling out the possibility that they were vascular endothelial cells and mesenchymal stem cells (MSCs), dCD34+ cells were found to be able to form tube structures after differentiation. Their angiogenic capacity was obviously superior to that of bone marrow mesenchymal stem cells (BMSCs). At the same time, these cells had immunogenicity similar to that of BMSCs. Following induction of myocardial infarction (MI) in adult rats, infarct size decreased and cardiac function was significantly enhanced after dCD34+ cell transplantation. The survival rate of cells increased, and more neovasculature was found following dCD34+ cell transplantation. Therefore, this study confirms the existence of CD34+ stem cells with strong angiogenic ability in human decidua from the first trimester, which can provide a new option for cell-based therapies for ischaemic diseases, especially IHD.


Sirtuin3 protects aged human mesenchymal stem cells against oxidative stress and enhances efficacy of cell therapy for ischaemic heart diseases.

  • Dong-Yang Zhang‎ et al.
  • Journal of cellular and molecular medicine‎
  • 2018‎

Sirtuin3 (SIRT3) is associated with oxidative stress and lifespan. However, the possible mechanisms underlying its influence are unknown. We hypothesized that SIRT3 increases the antioxidant capacity of aged cells and improves the efficacy of human mesenchymal stem cell (hMSC) therapy for ischaemic heart diseases in aged patients. In vitro, the antioxidant capacity of old hMSCs (O-hMSCs) was increased after SIRT3 overexpression using a gene transfection technique, while the antioxidant capacity of young hMSCs (Y-hMSCs) was decreased by SIRT3 silencing. The levels of forkhead box O3a (FoxO3a) in the nucleus, and antioxidant enzymes Mn-superoxide dismutase (MnSOD) and catalase (CAT) increased in SIRT3-overexpressed O-hMSCs while they decreased in SIRT3-silenced Y-hMSCs after oxidative stress. Following myocardial infarction in adult rats in vivo, infarct size decreased and cardiac function was significantly enhanced after cell transplantation with SIRT3 overexpressed O-hMSCs. The number of apoptotic cells decreased and the survival rate of transplanted cells increased following SIRT3 overexpression in O-hMSCs. SIRT3 protects aged hMSCs against oxidative stress by positively regulating antioxidant enzymes (MnSOD and CAT) via increasing the expression of FoxO3a in the nucleus. The efficacy of aged hMSC transplantation therapy for ischaemic heart diseases can be improved by SIRT3 overexpression.


RPL35A drives ovarian cancer progression by promoting the binding of YY1 to CTCF promoter.

  • Huijuan Wu‎ et al.
  • Journal of cellular and molecular medicine‎
  • 2024‎

Ovarian cancer is one of the most common gynaecological malignancies with poor prognosis and lack of effective treatment. The improvement of the situation of ovarian cancer urgently requires the exploration of its molecular mechanism to develop more effective molecular targeted drugs. In this study, the role of human ribosomal protein l35a (RPL35A) in ovarian cancer was explored in vitro and in vivo. Our data identified that RPL35A expression was abnormally elevated in ovarian cancer. Clinically, high expression of RPL35A predicted short survival and poor TNM staging in patients with ovarian cancer. Functionally, RPL35A knock down inhibited ovarian cancer cell proliferation and migration, enhanced apoptosis, while overexpression had the opposite effect. Mechanically, RPL35A promoted the direct binding of transcription factor YY1 to CTCF in ovarian cancer cells. Consistently, RPL35A regulated ovarian cancer progression depending on CTCF in vitro and in vivo. Furthermore, RPL35A affected the proliferation and apoptosis of ovarian cancer cells through PPAR signalling pathway. In conclusion, RPL35A drove ovarian cancer progression by promoting the binding of YY1 and CTCF promoter, and inhibiting this process may be an effective strategy for targeted therapy of this disease.


Phenotypic switching of vascular smooth muscle cells in the 'normal region' of aorta from atherosclerosis patients is regulated by miR-145.

  • Yu-Nan Zhang‎ et al.
  • Journal of cellular and molecular medicine‎
  • 2016‎

Switching of vascular smooth muscle cells (VSMCs) from a contractile phenotype to an adverse proliferative phenotype is a hallmark of atherosclerosis or vascular restenosis. However, the genetic modulators responsible for this switch have not been fully elucidated in humans nor have they been correlated with clinical abnormalities. This study investigated genetic mechanisms involved in phenotypic switching of VSMCs at non-defect areas of the aorta in patients with atherosclerosis. Aortic wall samples were obtained from patients with (N = 53) and without (N = 27) atherosclerosis undergoing cardiovascular surgery. Vascular smooth muscle cell cultures were generated, and expression of microRNA-145 (miR-145), its target gene Kruppel-Like Factor 5 (KLF5) and Myocardin (MYOCD, a smooth muscle-specific transcriptional coactivator) were analysed using RT-qPCR, along with expression of relevant proteins. Vascular smooth muscle cells were transduced with miR-145 inhibitor and mimic to determine the effect of miR-145 expression on VSMC proliferation. miR-145 expression decreased while KLF5 expression increased in atherosclerotic aortas. Atherosclerotic samples and VSMCs had decreased expression of contractile markers calponin and alpha smooth muscle actin (α-SMA) and MYOCD. miR-145 inhibitor-transduced VSMCs from non-atherosclerotic patients showed decreased expression of calponin and α-SMA and increased proliferation compared with non-transduced controls, and these levels were close to those of atherosclerotic patients. miR-145 mimic-transduced VSMCs from atherosclerotic patients showed increased expression of calponin and α-SMA and decreased proliferation compared with non-transduced controls, and these levels were close to those found in non-atherosclerotic patients. These data demonstrate that miR-145 modulates the phenotypic switch of VSMCs from a contractile to a proliferative state via KLF5 and MYOCD in atherosclerosis.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: