Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 20 papers out of 60 papers

Compound heterozygosity for loss-of-function lysyl-tRNA synthetase mutations in a patient with peripheral neuropathy.

  • Heather M McLaughlin‎ et al.
  • American journal of human genetics‎
  • 2010‎

Charcot-Marie-Tooth (CMT) disease comprises a genetically and clinically heterogeneous group of peripheral nerve disorders characterized by impaired distal motor and sensory function. Mutations in three genes encoding aminoacyl-tRNA synthetases (ARSs) have been implicated in CMT disease primarily associated with an axonal pathology. ARSs are ubiquitously expressed, essential enzymes responsible for charging tRNA molecules with their cognate amino acids. To further explore the role of ARSs in CMT disease, we performed a large-scale mutation screen of the 37 human ARS genes in a cohort of 355 patients with a phenotype consistent with CMT. Here we describe three variants (p.Leu133His, p.Tyr173SerfsX7, and p.Ile302Met) in the lysyl-tRNA synthetase (KARS) gene in two patients from this cohort. Functional analyses revealed that two of these mutations (p.Leu133His and p.Tyr173SerfsX7) severely affect enzyme activity. Interestingly, both functional variants were found in a single patient with CMT disease and additional neurological and non-neurological sequelae. Based on these data, KARS becomes the fourth ARS gene associated with CMT disease, indicating that this family of enzymes is specifically critical for axon function.


Novel SPG11 mutations in Asian kindreds and disruption of spatacsin function in the zebrafish.

  • Laura Southgate‎ et al.
  • Neurogenetics‎
  • 2010‎

Autosomal recessive hereditary spastic paraplegia with thin corpus callosum (HSP-TCC) maps to the SPG11 locus in the majority of cases. Mutations in the KIAA1840 gene, encoding spatacsin, have been shown to underlie SPG11-linked HSP-TCC. The aim of this study was to perform candidate gene analysis in HSP-TCC subjects from Asian families and to characterize disruption of spatacsin function during zebrafish development. Homozygosity mapping and direct sequencing were used to assess the ACCPN, SPG11, and SPG21 loci in four inbred kindreds originating from the Indian subcontinent. Four novel homozygous SPG11 mutations (c.442+1G>A, c.2146C>T, c.3602_3603delAT, and c.4846C>T) were identified, predicting a loss of spatacsin function in each case. To investigate the role of spatacsin during development, we additionally ascertained the complete zebrafish spg11 ortholog by reverse transcriptase PCR and 5′ RACE. Analysis of transcript expression through whole-mount in situ hybridization demonstrated ubiquitous distribution, with highest levels detected in the brain. Morpholino antisense oligonucleotide injection was used to knock down spatacsin function in zebrafish embryos. Examination of spg11 morphant embryos revealed a range of developmental defects and CNS abnormalities, and analysis of axon pathway formation demonstrated an overall perturbation of neuronal differentiation. These data confirm loss of spatacsin as the cause of SPG11-linked HSP-TCC in Asian kindreds, expanding the mutation spectrum recognized in this disorder. This study represents the first investigation in zebrafish addressing the function of a causative gene in autosomal recessive HSP and identifies a critical role for spatacsin during early neural development in vivo.


Alternative splicing events are a late feature of pathology in a mouse model of spinal muscular atrophy.

  • Dirk Bäumer‎ et al.
  • PLoS genetics‎
  • 2009‎

Spinal muscular atrophy is a severe motor neuron disease caused by inactivating mutations in the SMN1 gene leading to reduced levels of full-length functional SMN protein. SMN is a critical mediator of spliceosomal protein assembly, and complete loss or drastic reduction in protein leads to loss of cell viability. However, the reason for selective motor neuron degeneration when SMN is reduced to levels which are tolerated by all other cell types is not currently understood. Widespread splicing abnormalities have recently been reported at end-stage in a mouse model of SMA, leading to the proposition that disruption of efficient splicing is the primary mechanism of motor neuron death. However, it remains unclear whether splicing abnormalities are present during early stages of the disease, which would be a requirement for a direct role in disease pathogenesis. We performed exon-array analysis of RNA from SMN deficient mouse spinal cord at 3 time points, pre-symptomatic (P1), early symptomatic (P7), and late-symptomatic (P13). Compared to littermate control mice, SMA mice showed a time-dependent increase in the number of exons showing differential expression, with minimal differences between genotypes at P1 and P7, but substantial variation in late-symptomatic (P13) mice. Gene ontology analysis revealed differences in pathways associated with neuronal development as well as cellular injury. Validation of selected targets by RT-PCR confirmed the array findings and was in keeping with a shift between physiologically occurring mRNA isoforms. We conclude that the majority of splicing changes occur late in SMA and may represent a secondary effect of cell injury, though we cannot rule out significant early changes in a small number of transcripts crucial to motor neuron survival.


Defective cholesterol metabolism in amyotrophic lateral sclerosis.

  • Jonas Abdel-Khalik‎ et al.
  • Journal of lipid research‎
  • 2017‎

As neurons die, cholesterol is released in the central nervous system (CNS); hence, this sterol and its metabolites may represent a biomarker of neurodegeneration, including in amyotrophic lateral sclerosis (ALS), in which altered cholesterol levels have been linked to prognosis. More than 40 different sterols were quantified in serum and cerebrospinal fluid (CSF) from ALS patients and healthy controls. In CSF, the concentration of cholesterol was found to be elevated in ALS samples. When CSF metabolite levels were normalized to cholesterol, the cholesterol metabolite 3β,7α-dihydroxycholest-5-en-26-oic acid, along with its precursor 3β-hydroxycholest-5-en-26-oic acid and product 7α-hydroxy-3-oxocholest-4-en-26-oic acid, were reduced in concentration, whereas metabolites known to be imported from the circulation into the CNS were not found to differ in concentration between groups. Analysis of serum revealed that (25R)26-hydroxycholesterol, the immediate precursor of 3β-hydroxycholest-5-en-26-oic acid, was reduced in concentration in ALS patients compared with controls. We conclude that the acidic branch of bile acid biosynthesis, known to be operative in-part in the brain, is defective in ALS, leading to a failure of the CNS to remove excess cholesterol, which may be toxic to neuronal cells, compounded by a reduction in neuroprotective 3β,7α-dihydroxycholest-5-en-26-oic acid.


Whole-exome sequencing of 228 patients with sporadic Parkinson's disease.

  • Cynthia Sandor‎ et al.
  • Scientific reports‎
  • 2017‎

Parkinson's disease (PD) is the most common neurodegenerative movement disorder, affecting 1% of the population over 65 years characterized clinically by both motor and non-motor symptoms accompanied by the preferential loss of dopamine neurons in the substantia nigra pars compacta. Here, we sequenced the exomes of 244 Parkinson's patients selected from the Oxford Parkinson's Disease Centre Discovery Cohort and, after quality control, 228 exomes were available for analyses. The PD patient exomes were compared to 884 control exomes selected from the UK10K datasets. No single non-synonymous (NS) single nucleotide variant (SNV) nor any gene carrying a higher burden of NS SNVs was significantly associated with PD status after multiple-testing correction. However, significant enrichments of genes whose proteins have roles in the extracellular matrix were amongst the top 300 genes with the most significantly associated NS SNVs, while regions associated with PD by a recent Genome Wide Association (GWA) study were enriched in genes containing PD-associated NS SNVs. By examining genes within GWA regions possessing rare PD-associated SNVs, we identified RAD51B. The protein-product of RAD51B interacts with that of its paralogue RAD51, which is associated with congenital mirror movements phenotypes, a phenotype also comorbid with PD.


Neurotrophic Properties of C-Terminal Domain of the Heavy Chain of Tetanus Toxin on Motor Neuron Disease.

  • Mireia Herrando-Grabulosa‎ et al.
  • Toxins‎
  • 2020‎

The carboxyl-terminal domain of the heavy chain of tetanus toxin (Hc-TeTx) exerts a neuroprotective effect in neurodegenerative diseases via the activation of signaling pathways related to neurotrophins, and also through inhibiting apoptotic cell death. Here, we demonstrate that Hc-TeTx preserves motoneurons from chronic excitotoxicity in an in vitro model of amyotrophic lateral sclerosis. Furthermore, we found that PI3-K/Akt pathway, but not p21ras/MAPK pathway, is involved in their beneficial effects under chronic excitotoxicity. Moreover, we corroborate the capacity of the Hc-TeTx to be transported retrogradely into the spinal motor neurons and also its capacity to bind to the motoneuron-like cell line NSC-34. These findings suggest a possible therapeutic tool to improve motoneuron preservation in neurodegenerative diseases such as amyotrophic lateral sclerosis.


Objectively Monitoring Amyotrophic Lateral Sclerosis Patient Symptoms During Clinical Trials With Sensors: Observational Study.

  • Luis Garcia-Gancedo‎ et al.
  • JMIR mHealth and uHealth‎
  • 2019‎

Objective symptom monitoring of patients with Amyotrophic Lateral Sclerosis (ALS) has the potential to provide an important source of information to evaluate the impact of the disease on aspects of real-world functional capacity and activities of daily living in the home setting, providing useful objective outcome measures for clinical trials.


Frequency and signature of somatic variants in 1461 human brain exomes.

  • Wei Wei‎ et al.
  • Genetics in medicine : official journal of the American College of Medical Genetics‎
  • 2019‎

To systematically study somatic variants arising during development in the human brain across a spectrum of neurodegenerative disorders.


Higher blood high density lipoprotein and apolipoprotein A1 levels are associated with reduced risk of developing amyotrophic lateral sclerosis.

  • Alexander G Thompson‎ et al.
  • Journal of neurology, neurosurgery, and psychiatry‎
  • 2022‎

Premorbid body mass index, physical activity, diabetes and cardiovascular disease have been associated with an altered risk of developing amyotrophic lateral sclerosis (ALS). There is evidence of shared genetic risk between ALS and lipid metabolism. A very large prospective longitudinal population cohort permits the study of a range of metabolic parameters and the risk of subsequent diagnosis of ALS.


Targeting phosphoglycerate kinase 1 with terazosin improves motor neuron phenotypes in multiple models of amyotrophic lateral sclerosis.

  • Helena Chaytow‎ et al.
  • EBioMedicine‎
  • 2022‎

Amyotrophic lateral sclerosis (ALS) is a fatal neurodegenerative disorder with heterogeneous aetiology and a complex genetic background. Effective therapies are therefore likely to act on convergent pathways such as dysregulated energy metabolism, linked to multiple neurodegenerative diseases including ALS.


Next generation sequencing for molecular diagnosis of neurological disorders using ataxias as a model.

  • Andrea H Németh‎ et al.
  • Brain : a journal of neurology‎
  • 2013‎

Many neurological conditions are caused by immensely heterogeneous gene mutations. The diagnostic process is often long and complex with most patients undergoing multiple invasive and costly investigations without ever reaching a conclusive molecular diagnosis. The advent of massively parallel, next-generation sequencing promises to revolutionize genetic testing and shorten the 'diagnostic odyssey' for many of these patients. We performed a pilot study using heterogeneous ataxias as a model neurogenetic disorder to assess the introduction of next-generation sequencing into clinical practice. We captured 58 known human ataxia genes followed by Illumina Next-Generation Sequencing in 50 highly heterogeneous patients with ataxia who had been extensively investigated and were refractory to diagnosis. All cases had been tested for spinocerebellar ataxia 1-3, 6, 7 and Friedrich's ataxia and had multiple other biochemical, genetic and invasive tests. In those cases where we identified the genetic mutation, we determined the time to diagnosis. Pathogenicity was assessed using a bioinformatics pipeline and novel variants were validated using functional experiments. The overall detection rate in our heterogeneous cohort was 18% and varied from 8.3% in those with an adult onset progressive disorder to 40% in those with a childhood or adolescent onset progressive disorder. The highest detection rate was in those with an adolescent onset and a family history (75%). The majority of cases with detectable mutations had a childhood onset but most are now adults, reflecting the long delay in diagnosis. The delays were primarily related to lack of easily available clinical testing, but other factors included the presence of atypical phenotypes and the use of indirect testing. In the cases where we made an eventual diagnosis, the delay was 3-35 years (mean 18.1 years). Alignment and coverage metrics indicated that the capture and sequencing was highly efficient and the consumable cost was ∼£400 (€460 or US$620). Our pathogenicity interpretation pathway predicted 13 different mutations in eight different genes: PRKCG, TTBK2, SETX, SPTBN2, SACS, MRE11, KCNC3 and DARS2 of which nine were novel including one causing a newly described recessive ataxia syndrome. Genetic testing using targeted capture followed by next-generation sequencing was efficient, cost-effective, and enabled a molecular diagnosis in many refractory cases. A specific challenge of next-generation sequencing data is pathogenicity interpretation, but functional analysis confirmed the pathogenicity of novel variants showing that the pipeline was robust. Our results have broad implications for clinical neurology practice and the approach to diagnostic testing.


Predictors of cognitive impairment in an early stage Parkinson's disease cohort.

  • Michele T M Hu‎ et al.
  • Movement disorders : official journal of the Movement Disorder Society‎
  • 2014‎

The impact of Parkinson's disease (PD) dementia is substantial and has major functional and socioeconomic consequences. Early prediction of future cognitive impairment would help target future interventions. The Montreal Cognitive Assessment (MoCA), the Mini-Mental State Examination (MMSE), and fluency tests were administered to 486 patients with PD within 3.5 years of diagnosis, and the results were compared with those from 141 controls correcting for age, sex, and educational years. Eighteen-month longitudinal assessments were performed in 155 patients with PD. The proportion of patients classified with normal cognition, mild cognitive impairment (MCI), and dementia varied considerably, depending on the MoCA and MMSE thresholds used. With the MoCA total score at screening threshold, 47.7%, 40.5%, and 11.7% of patients with PD were classified with normal cognition, MCI, and dementia, respectively; by comparison, 78.7% and 21.3% of controls had normal cognition and MCI, respectively. Cognitive impairment was predicted by lower education, increased age, male sex, and quantitative motor and non-motor (smell, depression, and anxiety) measures. Longitudinal data from 155 patients with PD over 18 months showed significant reductions in MoCA scores, but not in MMSE scores, with 21.3% of patients moving from normal cognition to MCI and 4.5% moving from MCI to dementia, although 13.5% moved from MCI to normal; however, none of the patients with dementia changed their classification. The MoCA may be more sensitive than the MMSE in detecting early baseline and longitudinal cognitive impairment in PD, because it identified 25.8% of those who experienced significant cognitive decline over 18 months. Cognitive decline was associated with worse motor and non-motor features, suggesting that this reflects a faster progressive phenotype.


An ALS-linked mutation in TDP-43 disrupts normal protein interactions in the motor neuron response to oxidative stress.

  • Emily Feneberg‎ et al.
  • Neurobiology of disease‎
  • 2020‎

TDP-43 pathology is a key feature of amyotrophic lateral sclerosis (ALS), but the mechanisms linking TDP-43 to altered cellular function and neurodegeneration remain unclear. We have recently described a mouse model in which human wild-type or mutant TDP-43 are expressed at low levels and where altered stress granule formation is a robust phenotype of TDP-43M337V/- expressing cells. In the present study we use this model to investigate the functional connectivity of human TDP-43 in primary motor neurons under resting conditions and in response to oxidative stress. The interactome of human TDP-43WT or TDP-43M337V was compared by mass spectrometry, and gene ontology enrichment analysis identified pathways dysregulated by the M337V mutation. We found that under normal conditions the interactome of human TDP-43WT was enriched for proteins involved in transcription, translation and poly(A)-RNA binding. In response to oxidative stress, TDP-43WT recruits proteins of the endoplasmic reticulum and endosomal-extracellular transport pathways, interactions which are reduced in the presence of the M337V mutation. Specifically, TDP-43M337V impaired protein-protein interactions involved in stress granule formation including reduced binding to the translation initiation factors Poly(A)-binding protein and Eif4a1 and the endoplasmic reticulum chaperone Grp78. The M337V mutation also affected interactions involved in endosomal-extracellular transport and this this was associated with reduced extracellular vesicle secretion in primary motor neurons from TDP-43M337V/- mice and in human iPSCs-derived motor neurons. Taken together, our analysis highlights a TDP-43 interaction network in motor neurons and demonstrates that an ALS associated mutation may alter the interactome to drive aberrant pathways involved in the pathogenesis of ALS.


Interaction of Axonal Chondrolectin with Collagen XIXa1 Is Necessary for Precise Neuromuscular Junction Formation.

  • Ana-Maria Oprişoreanu‎ et al.
  • Cell reports‎
  • 2019‎

Chondrolectin (Chodl) is needed for motor axon extension in zebrafish and is dysregulated in mouse models of spinal muscular atrophy (SMA). However, the mechanistic basis of Chodl function is not known. Here, we use Chodl-deficient zebrafish and mouse mutants to show that the absence of Chodl leads to anatomical and functional defects of the neuromuscular synapse. In zebrafish, the growth of an identified motor axon beyond an "en passant" synapse and later axon branching from synaptic points are impaired, leading to functional deficits. Mechanistically, motor-neuron-autonomous Chodl function depends on its intracellular domain and on binding muscle-derived collagen XIXa1 by its extracellular C-type lectin domain. Our data support evolutionarily conserved roles of Chodl in synaptogenesis and provide evidence for a "synapse-first" scenario of motor axon growth in zebrafish.


Genetic testing in motor neurone disease.

  • Thanuja Dharmadasa‎ et al.
  • Practical neurology‎
  • 2022‎

A minority (10%-15%) of cases of amyotrophic lateral sclerosis (ALS), the most common form of motor neurone disease (MND), are currently attributable to pathological variants in a single identifiable gene. With the emergence of new therapies targeting specific genetic subtypes of ALS, there is an increasing role for routine genetic testing for all those with a definite diagnosis. However, potential harm to both affected individuals and particularly to asymptomatic relatives can arise from the indiscriminate use of genetic screening, not least because of uncertainties around incomplete penetrance and variants of unknown significance. The most common hereditary cause of ALS, an intronic hexanucleotide repeat expansion in C9ORF72, may be associated with frontotemporal dementia independently within the same pedigree. The boundary of what constitutes a possible family history of MND has therefore extended to include dementia and associated psychiatric presentations. Notwithstanding the important role of clinical genetics specialists, all neurologists need a basic understanding of the current place of genetic testing in MND, which holds lessons for other neurological disorders.


ADCY5-related dyskinesia presenting as familial myoclonus-dystonia.

  • Andrew G L Douglas‎ et al.
  • Neurogenetics‎
  • 2017‎

We describe a family with an autosomal dominant familial dyskinesia resembling myoclonus-dystonia associated with a novel missense mutation in ADCY5, found through whole-exome sequencing. A tiered analytical approach was used to analyse whole-exome sequencing data from an affected grandmother-granddaughter pair. Whole-exome sequencing identified 18,000 shared variants, of which 46 were non-synonymous changes not present in a local cohort of control exomes (n = 422). Further filtering based on predicted splicing effect, minor allele frequency in the 1000 Genomes Project and on phylogenetic conservation yielded 13 candidate variants, of which the heterozygous missense mutation c.3086T>G, p. M1029R in ADCY5 most closely matched the observed phenotype. This report illustrates the utility of whole-exome sequencing in cases of undiagnosed movement disorders with clear autosomal dominant inheritance. Moreover, ADCY5 mutations should be considered in cases with apparent myoclonus-dystonia, particularly where SCGE mutations have been excluded. ADCY5-related dyskinesia may manifest variable expressivity within a single family, and affected individuals may be initially diagnosed with differing neurological phenotypes.


A fine balance between Prpf19 and Exoc7 in achieving degradation of aggregated protein and suppression of cell death in spinocerebellar ataxia type 3.

  • Zhefan Stephen Chen‎ et al.
  • Cell death & disease‎
  • 2021‎

Polyglutamine (polyQ) diseases comprise Huntington's disease and several subtypes of spinocerebellar ataxia, including spinocerebellar ataxia type 3 (SCA3). The genomic expansion of coding CAG trinucleotide sequence in disease genes leads to the production and accumulation of misfolded polyQ domain-containing disease proteins, which cause cellular dysfunction and neuronal death. As one of the principal cellular protein clearance pathways, the activity of the ubiquitin-proteasome system (UPS) is tightly regulated to ensure efficient clearance of damaged and toxic proteins. Emerging evidence demonstrates that UPS plays a crucial role in the pathogenesis of polyQ diseases. Ubiquitin (Ub) E3 ligases catalyze the transfer of a Ub tag to label proteins destined for proteasomal clearance. In this study, we identified an E3 ligase, pre-mRNA processing factor 19 (Prpf19/prp19), that modulates expanded ataxin-3 (ATXN3-polyQ), disease protein of SCA3, induced neurodegeneration in both mammalian and Drosophila disease models. We further showed that Prpf19/prp19 promotes poly-ubiquitination and degradation of mutant ATXN3-polyQ protein. Our data further demonstrated the nuclear localization of Prpf19/prp19 is essential for eliciting its modulatory function towards toxic ATXN3-polyQ protein. Intriguingly, we found that exocyst complex component 7 (Exoc7/exo70), a Prpf19/prp19 interacting partner, modulates expanded ATXN3-polyQ protein levels and toxicity in an opposite manner to Prpf19/prp19. Our data suggest that Exoc7/exo70 exerts its ATXN3-polyQ-modifying effect through regulating the E3 ligase function of Prpf19/prp19. In summary, this study allows us to better define the mechanistic role of Exoc7/exo70-regulated Prpf19/prp19-associated protein ubiquitination pathway in SCA3 pathogenesis.


Network Analysis of the CSF Proteome Characterizes Convergent Pathways of Cellular Dysfunction in ALS.

  • Alexander G Thompson‎ et al.
  • Frontiers in neuroscience‎
  • 2021‎

Amyotrophic lateral sclerosis is a clinical syndrome with complex biological determinants, but which in most cases is characterized by TDP-43 pathology. The identification in CSF of a protein signature of TDP-43 network dysfunction would have the potential to inform the identification of new biomarkers and therapeutic targets.


The impact of age on genetic testing decisions in amyotrophic lateral sclerosis.

  • Puja R Mehta‎ et al.
  • Brain : a journal of neurology‎
  • 2022‎

Amyotrophic lateral sclerosis (ALS) is a heterogeneous neurodegenerative syndrome. In up to 20% of cases, a family history is observed. Although Mendelian disease gene variants are found in apparently sporadic ALS, genetic testing is usually restricted to those with a family history or younger patients with sporadic disease. With the advent of therapies targeting genetic ALS, it is important that everyone treatable is identified. We therefore sought to determine the probability of a clinically actionable ALS genetic test result by age of onset, globally, but using the UK as an exemplar. Blood-derived DNA was sequenced for ALS genes, and the probability of a clinically actionable genetic test result estimated. For a UK subset, age- and sex-specific population incidence rates were used to determine the number of such results missed by restricting testing by age of onset according to UK's National Genomic Test Directory criteria. There were 6274 people with sporadic ALS, 1551 from the UK. The proportion with a clinically actionable genetic test result ranged between 0.21 [95% confidence interval (CI) 0.18-0.25] in the youngest age group to 0.15 (95% CI 0.13-0.17) in the oldest age group for a full gene panel. For the UK, the equivalent proportions were 0.23 (95% CI 0.13-0.33) in the youngest age group to 0.17 (95% CI 0.13-0.21) in the oldest age group. By limiting testing in those without a family history to people with onset below 40 years, 115 of 117 (98% of all, 95% CI 96%-101%) clinically actionable test results were missed. There is a significant probability of a clinically actionable genetic test result in people with apparently sporadic ALS at all ages. Although some countries limit testing by age, doing so results in a significant number of missed pathogenic test results. Age of onset and family history should not be a barrier to genetic testing in ALS.


Single-copy expression of an amyotrophic lateral sclerosis-linked TDP-43 mutation (M337V) in BAC transgenic mice leads to altered stress granule dynamics and progressive motor dysfunction.

  • David Gordon‎ et al.
  • Neurobiology of disease‎
  • 2019‎

Mutations in the gene encoding the RNA-binding protein TDP-43 cause amyotrophic lateral sclerosis (ALS), clinically and pathologically indistinguishable from the majority of 'sporadic' cases of ALS, establishing altered TDP-43 function and distribution as a primary mechanism of neurodegeneration. Transgenic mouse models in which TDP-43 is overexpressed only partially recapitulate the key cellular pathology of human ALS, but may also lead to non-specific toxicity. To avoid the potentially confounding effects of overexpression, and to maintain regulated spatio-temporal and cell-specific expression, we generated mice in which an 80 kb genomic fragment containing the intact human TDP-43 locus (either TDP-43WT or TDP-43M337V) and its regulatory regions was integrated into the Rosa26 (Gt(ROSA26)Sor) locus in a single copy. At 3 months of age, TDP-43M337V mice are phenotypically normal but by around 6 months develop progressive motor function deficits associated with loss of neuromuscular junction integrity, leading to a reduced lifespan. RNA sequencing shows that widespread mis-splicing is absent prior to the development of a motor phenotype, though differential expression analysis reveals a distinct transcriptional profile in pre-symptomatic TDP-43M337V spinal cords. Despite the presence of clear motor abnormalities, there was no evidence of TDP-43 cytoplasmic aggregation in vivo at any timepoint. In primary embryonic spinal motor neurons and in embryonic stem cell (ESC)-derived motor neurons, mutant TDP-43 undergoes cytoplasmic mislocalisation, and is associated with altered stress granule assembly and dynamics. Overall, this mouse model provides evidence that ALS may arise through acquired TDP-43 toxicity associated with defective stress granule function. The normal phenotype until 6 months of age can facilitate the study of early pathways underlying ALS.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: