Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 19 papers out of 19 papers

A Novel Method for Training Mice in Visuo-Tactile 3-D Object Discrimination and Recognition.

  • Xian Hu‎ et al.
  • Frontiers in behavioral neuroscience‎
  • 2018‎

Perceiving, recognizing and remembering 3-dimensional (3-D) objects encountered in the environment has a very high survival value; unsurprisingly, this ability is shared among many animal species, including humans. The psychological, psychophysical and neural basis for object perception, discrimination, recognition and memory has been extensively studied in humans, monkeys, pigeons and rodents, but is still far from understood. Nearly all 3-D object recognition studies in the rodent used the "novel object recognition" paradigm, which relies on innate rather than learned behavior; however, this procedure has several important limitations. Recently, investigators have begun to recognize the power of behavioral tasks learned through reinforcement training (operant conditioning) to reveal the sensorimotor and cognitive abilities of mice and to elucidate their underlying neural mechanisms. Here, we describe a novel method for training and testing mice in visual and tactile object discrimination, recognition and memory, and use it to begin to examine the underlying sensory basis for these cognitive capacities. A custom-designed Y maze was used to train mice to associate one of two 3-D objects with a food reward. Out of nine mice trained in two cohorts, seven reached performance criterion in about 20-35 daily sessions of 20 trials each. The learned association was retained, or rapidly re-acquired, after a 6 weeks hiatus in training. When tested under low light conditions, individual animals differed in the degree to which they used tactile or visual cues to identify the objects. Switching to total darkness resulted only in a transient dip in performance, as did subsequent trimming of all large whiskers (macrovibrissae). Additional removal of the small whiskers (microvibrissae) did not degrade performance, but transiently increased the time spent inspecting the object. This novel method can be combined in future studies with the large arsenal of genetic tools available in the mouse, to elucidate the neural basis of object perception, recognition and memory.


Inflammatory Endotypes and Microbial Associations in Chronic Rhinosinusitis.

  • Michael Hoggard‎ et al.
  • Frontiers in immunology‎
  • 2018‎

A complex mix of inflammatory and microbial associations underscores the chronic inflammatory condition chronic rhinosinusitis (CRS), and the etiology remains poorly understood. Recent work has begun to delineate between variants (endotypes) of CRS on the basis of inflammatory biomarkers. This study aimed to assess inflammatory patterns in CRS phenotypes, identify putative endotypes of CRS, and to assess inflammatory associations with the sinonasal microbiota. Ten cytokines and six inflammatory cell types were assessed in mucosal biopsies from 93 CRS subjects and 17 controls via cytometric bead array and immunohistochemical techniques. Putative endotypes were identified via cluster analysis of subjects on the basis of inflammatory markers and comorbidities including polyposis, asthma, and aspirin sensitivity. Finally, previously published bacterial data for this cohort were reanalyzed to evaluate associations with inflammatory markers and CRS subtypes. Inflammatory patterns were highly variable within standard CRS phenotypes. Cluster analysis identified eight subject clusters, with strong delineation on the basis of polyposis and asthma, but also subtle distinctions in inflammatory markers. An association was also identified between depletion of several "health-associated" bacterial taxa, reduced bacterial diversity and increased overall bacterial load, with markers of inflammation and clinical severity. This study contributes to ongoing efforts to define distinct endotypes of CRS on the basis of underlying inflammatory processes, and also offers compelling evidence of a link between bacterial community dysbiosis and inflammation in CRS. Further resolving the heterogeneity of CRS is vital to inform clinical management and personalized treatment approaches.


Vital members in the gut microbiotas altered by two probiotic Bifidobacterium strains against liver damage in rats.

  • Hua Zha‎ et al.
  • BMC microbiology‎
  • 2020‎

Probiotics are effective to rectify the imbalanced gut microbiota in the diseased cohorts. Two Bifidobacterium strains (LI09 and LI10) were found to alleviate D-galactosamine-induced liver damage (LD) in rats in our previous work. A series of bioinformatic and statistical analyses were performed to determine the vital bacteria in the gut microbiotas altered by the LI09 or LI10 in rats.


Experimental DNA Demethylation Associates with Changes in Growth and Gene Expression of Oak Tree Seedlings.

  • Luke Browne‎ et al.
  • G3 (Bethesda, Md.)‎
  • 2020‎

Epigenetic modifications such as DNA methylation, where methyl groups are added to cytosine base pairs, have the potential to impact phenotypic variation and gene expression, and could influence plant response to changing environments. One way to test this impact is through the application of chemical demethylation agents, such as 5-Azacytidine, which inhibit DNA methylation and lead to a partial reduction in DNA methylation across the genome. In this study, we treated 5-month-old seedlings of the tree, Quercus lobata, with foliar application of 5-Azacytidine to test whether a reduction in genome-wide methylation would cause differential gene expression and change phenotypic development. First, we demonstrate that demethylation treatment led to 3-6% absolute reductions and 6.7-43.2% relative reductions in genome-wide methylation across CG, CHG, and CHH sequence contexts, with CHH showing the strongest relative reduction. Seedlings treated with 5-Azacytidine showed a substantial reduction in new growth, which was less than half that of control seedlings. We tested whether this result could be due to impact of the treatment on the soil microbiome and found minimal differences in the soil microbiome between two groups, although with limited sample size. We found no significant differences in leaf fluctuating asymmetry (i.e., deviations from bilateral symmetry), which has been found in other studies. Nonetheless, treated seedlings showed differential expression of a total of 23 genes. Overall, this study provides initial evidence that DNA methylation is involved in gene expression and phenotypic variation in seedlings and suggests that removal of DNA methylation affects plant development.


Comparison of Subtyping Approaches and the Underlying Drivers of Microbial Signatures for Chronic Rhinosinusitis.

  • Kristi Biswas‎ et al.
  • mSphere‎
  • 2019‎

Chronic rhinosinusitis (CRS) is a heterogeneous condition characterized by persistent sinus inflammation and microbial dysbiosis. This study aimed to identify clinically relevant subgroups of CRS patients based on distinct microbial signatures, with a comparison to the commonly used phenotypic subgrouping approach. The underlying drivers of these distinct microbial clusters were also investigated, together with associations with epithelial barrier integrity. Sinus biopsy specimens were collected from CRS patients (n = 23) and disease controls (n = 8). The expression of 42 tight junction genes was evaluated using quantitative PCR together with microbiota analysis and immunohistochemistry for measuring mucosal integrity and inflammation. CRS patients clustered into two distinct microbial subgroups using probabilistic modelling Dirichlet (DC) multinomial mixtures. DC1 exhibited significantly reduced bacterial diversity and increased dispersion and was dominated by Pseudomonas, Haemophilus, and Achromobacter DC2 had significantly elevated B cells and incidences of nasal polyps and higher numbers of Anaerococcus, Megasphaera, Prevotella, Atopobium, and Propionibacterium In addition, each DC exhibited distinct tight junction gene and protein expression profiles compared with those of controls. Stratifying CRS patients based on clinical phenotypic subtypes (absence or presence of nasal polyps [CRSsNP or CRSwNP, respectively] or with cystic fibrosis [CRSwCF]) accounted for a larger proportion of the variation in the microbial data set than with DC groupings. However, no significant differences between CRSsNP and CRSwNP cohorts were observed for inflammatory markers, beta-dispersion, and alpha-diversity measures. In conclusion, both approaches used for stratifying CRS patients had benefits and pitfalls, but DC clustering provided greater resolution when studying tight junction impairment. Future studies in CRS should give careful consideration to the patient subtyping approach used.IMPORTANCE Chronic rhinosinusitis (CRS) is a major human health problem that significantly reduces quality of life. While various microbes have been implicated, there is no clear understanding of the role they play in CRS pathogenesis. Another equally important observation made for CRS patients is that the epithelial barrier in the sinonasal cavity is defective. Finding a robust approach to subtype CRS patients would be the first step toward unravelling the pathogenesis of this heterogeneous condition. Previous work has explored stratification based on the clinical presentation of the disease (with or without polyps), inflammatory markers, pathology, or microbial composition. Comparisons between the different stratification approaches used in these studies have not been possible due to the different cohorts, analytical methods, or sample sites used. In this study, two approaches for subtyping CRS patients were compared, and the underlying drivers of the heterogeneity in CRS were also explored.


Vital Members in the More Dysbiotic Oropharyngeal Microbiotas in H7N9-Infected Patients.

  • Hua Zha‎ et al.
  • Frontiers in medicine‎
  • 2020‎

The dysbiosis of oropharyngeal (OP) microbiota is associated with multiple diseases, including H7N9 infection. Different OP microbial colonization states may reflect different severities or stages of disease and affect the effectiveness of the treatments. Current study aims to determine the vital bacteria that could possibly drive the OP microbiota in the H7N9 patients to more severe microbial dysbiosis state. The OP microbiotas of 42 H7N9 patients and 30 healthy subjects were analyzed by a series of bioinformatics and statistical analyses. Two clusters of OP microbiotas in H7N9 patients, i.e., Cluster_1_Diseased and Cluster_2_Diseased, were determined at two microbial colonization states by Partition Around Medoids (PAM) clustering analysis, each characterized by distinct operational taxonomic units (OTUs) and functional metabolites. Cluster_1_Diseased was determined at more severe dysbiosis status compared with Cluster_2_Diseased, while OTU143_Capnocytophaga and OTU269_Treponema acted as gatekeepers for both of the two clustered microbiotas. Nine OTUs assigned to seven taxa, i.e., Alloprevotella, Atopobium, Megasphaera, Oribacterium, Prevotella, Stomatobaculum, and Veillonella, were associated with both H7N9 patients with and without secondary bacterial lung infection in Cluster_1. In addition, two groups of healthy cohorts may have potential different susceptibilities to H7N9 infection. These findings suggest that two OP microbial colonization states of H7N9 patients were at different dysbiosis states, which may help determine the health status of H7N9 patients, as well as the susceptibility of healthy subjects to H7N9 infection.


Multiomic analysis identifies natural intrapatient temporal variability and changes in response to systemic corticosteroid therapy in chronic rhinosinusitis.

  • Michael Hoggard‎ et al.
  • Immunity, inflammation and disease‎
  • 2021‎

The pathophysiology and temporal dynamics of affected tissues in chronic rhinosinusitis (CRS) remain poorly understood. Here, we present a multiomics-based time-series assessment of nasal polyp biopsies from three patients with CRS, assessing natural variability over time and local response to systemic corticosteroid therapy.


Frequency of venous thromboembolism in 6513 patients with COVID-19: a retrospective study.

  • Jason B Hill‎ et al.
  • Blood advances‎
  • 2020‎

Patients infected with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) appear to be at increased risk for venous thromboembolism (VTE), especially if they become critically ill with COVID-19. Some centers have reported very high rates of thrombosis despite anticoagulant prophylaxis. The electronic health record (EHR) of a New Orleans-based health system was searched for all patients with polymerase chain reaction-confirmed SARS-CoV-2 infection who were either admitted to hospital or treated and discharged from an emergency department between 1 March 2020 and 1 May 2020. From this cohort, patients with confirmed VTE (either during or after their hospital encounter) were identified by administrative query of the EHR.: Between 1 March 2020 and 1 May 2020, 6153 patients with COVID-19 were identified; 2748 of these patients were admitted, while 3405 received care exclusively through the emergency department. In total, 637 patients required mechanical ventilation and 206 required renal replacement therapy. Within the hospitalized cohort, the overall mortality rate was 24.5% and VTE occurred in 86 patients (3.1%). In the 637 patients who required mechanical ventilation at some point during their hospital stay, 45 developed VTE (7.2%). After a median follow-up of 14.6 days, VTE had been diagnosed in 3 of the 2075 admitted who were discharged alive (0.14%). Among 6153 patients with COVID-19 who were hospitalized or treated in emergency departments, we did not find evidence of unusually high VTE risk. Pending further evidence from prospective, controlled trials, our findings support a traditional approach to primary VTE prevention in patients with COVID-19.


Tumor Cell-Surface Binding of Immune Stimulating Polymeric Glyco-Adjuvant via Cysteine-Reactive Pyridyl Disulfide Promotes Antitumor Immunity.

  • Anna J Slezak‎ et al.
  • ACS central science‎
  • 2022‎

Immune stimulating agents like Toll-like receptor 7 (TLR7) agonists induce potent antitumor immunity but are limited in their therapeutic window due to off-target immune activation. Here, we developed a polymeric delivery platform that binds excess unpaired cysteines on tumor cell surfaces and debris to adjuvant tumor neoantigens as an in situ vaccine. The metabolic and enzymatic dysregulation in the tumor microenvironment produces these exofacial free thiols, which can undergo efficient disulfide exchange with thiol-reactive pyridyl disulfide moieties upon intratumoral injection. These functional monomers are incorporated into a copolymer with pendant mannose groups and TLR7 agonists to target both antigen and adjuvant to antigen presenting cells. When tethered in the tumor, the polymeric glyco-adjuvant induces a robust antitumor response and prolongs survival of tumor-bearing mice, including in checkpoint-resistant B16F10 melanoma. The construct additionally reduces systemic toxicity associated with clinically relevant small molecule TLR7 agonists.


Longitudinal study of the bacterial and fungal microbiota in the human sinuses reveals seasonal and annual changes in diversity.

  • Brett Wagner Mackenzie‎ et al.
  • Scientific reports‎
  • 2019‎

There is a pressing need for longitudinal studies which examine the stability of the sinonasal microbiota. In this study, we investigated bacterial and fungal community composition of the sinuses of four healthy individuals every month for one year, then once every three months for an additional year to capture seasonal variation. Sequencing of bacterial 16S rRNA genes and fungal ITS2 revealed communities that were mainly dominated by members of Actinobacteria and Basidiomycota, respectively. We observed overall shifts in both bacterial and fungal community diversity that were attributable to a combination of individual, seasonal and annual changes. The results suggest that each of the subjects possessed a strong bacterial sinonasal signature, but that fungal communities were less subject specific. Differences in fungal and bacterial diversity between subjects, and which OTUs may be correlated with seasonal differences, were investigated. A small core community that persisted throughout the two year sampling period was identified: Corynebacterium, Propionibacterium and Staphylococcus, and one type of fungus, Malassezia restricta. It is likely that bacterial and fungal airway microbiomes are dynamic and experience natural shifts in diversity with time. The underlying reasons for these shifts appear to be a combination of changes in environmental climate and host factors.


Membrane-localized neoantigens predict the efficacy of cancer immunotherapy.

  • Zoe Goldberger‎ et al.
  • Cell reports. Medicine‎
  • 2023‎

Immune checkpoint immunotherapy (ICI) can re-activate immune reactions against neoantigens, leading to remarkable remission in cancer patients. Nevertheless, only a minority of patients are responsive to ICI, and approaches for prediction of responsiveness are needed to improve the success of cancer treatments. While the tumor mutational burden (TMB) correlates positively with responsiveness and survival of patients undergoing ICI, the influence of the subcellular localizations of the neoantigens remains unclear. Here, we demonstrate in both a mouse melanoma model and human clinical datasets of 1,722 ICI-treated patients that a high proportion of membrane-localized neoantigens, particularly at the plasma membrane, correlate with responsiveness to ICI therapy and improved overall survival across multiple cancer types. We further show that combining membrane localization and TMB analyses can enhance the predictability of cancer patient response to ICI. Our results may have important implications for establishing future clinical guidelines to direct the choice of treatment toward ICI.


Engineered IL-7 synergizes with IL-12 immunotherapy to prevent T cell exhaustion and promote memory without exacerbating toxicity.

  • Seounghun Kang‎ et al.
  • Science advances‎
  • 2023‎

Cancer immunotherapy is moving toward combination regimens with agents of complementary mechanisms of action to achieve more frequent and robust efficacy. However, compared with single-agent therapies, combination immunotherapies are associated with increased overall toxicity because the very same mechanisms also work in concert to enhance systemic inflammation and promote off-tumor toxicity. Therefore, rational design of combination regimens that achieve improved antitumor control without exacerbated toxicity is a main objective in combination immunotherapy. Here, we show that the combination of engineered, tumor matrix-binding interleukin-7 (IL-7) and IL-12 achieves remarkable anticancer effects by activating complementary pathways without inducing any additive immunotoxicity. Mechanistically, engineered IL-12 provided effector properties to T cells, while IL-7 prevented their exhaustion and boosted memory formation as assessed by tumor rechallenge experiments. The dual combination also rendered checkpoint inhibitor (CPI)-resistant genetically engineered melanoma model responsive to CPI. Thus, our approach provides a framework of evaluation of rationally designed combinations in immuno-oncology and yields a promising therapy.


Nanoparticle delivery of Cas9 ribonucleoprotein and donor DNA in vivo induces homology-directed DNA repair.

  • Kunwoo Lee‎ et al.
  • Nature biomedical engineering‎
  • 2017‎

CRISPR/Cas9-based therapeutics, especially those that can correct gene mutations via homology directed repair (HDR), have the potential to revolutionize the treatment of genetic diseases. However, HDR-based therapeutics are challenging to develop because they require simultaneous in vivo delivery of Cas9 protein, guide RNA and donor DNA. Here, we demonstrate that a delivery vehicle composed of gold nanoparticles conjugated to DNA and complexed with cationic endosomal disruptive polymers can deliver Cas9 ribonucleoprotein and donor DNA into a wide variety of cell types, and efficiently correct the DNA mutation that causes Duchenne muscular dystrophy in mice via local injection, with minimal off-target DNA damage.


Synthesis and Preliminary Antimicrobial Analysis of Isatin-Ferrocene and Isatin-Ferrocenyl Chalcone Conjugates.

  • Amandeep Singh‎ et al.
  • ACS omega‎
  • 2018‎

In this study, we outline the synthesis of isatin-ferrocenyl chalcone and 1H-1,2,3-triazole-tethered isatin-ferrocene conjugates along with their antimicrobial evaluation against the human mucosal pathogen Trichomonas vaginalis. The introduction of a triazole ring among the synthesized conjugates improved the activity profiles with most of the compounds in the library, exhibiting 100% growth inhibition in a preliminary susceptibility screen at 100 μM. IC50 determination of the most potent compounds in the set revealed an inhibitory range between 2 and 13 μM. Normal flora microbiome are unaffected by these compounds, suggesting that these may be new chemical scaffolds for the discovery of new drugs against trichomonad infections.


Immunotoxin-Induced Ablation of the Intrinsically Photosensitive Retinal Ganglion Cells in Rhesus Monkeys.

  • Lisa A Ostrin‎ et al.
  • Frontiers in neurology‎
  • 2018‎

Purpose: Intrinsically photosensitive retinal ganglion cells (ipRGCs) contain the photopigment melanopsin, and are primarily involved in non-image forming functions, such as the pupillary light reflex and circadian rhythm entrainment. The goal of this study was to develop and validate a targeted ipRGC immunotoxin to ultimately examine the role of ipRGCs in macaque monkeys. Methods: An immunotoxin for the macaque melanopsin gene (OPN4), consisting of a saporin-conjugated antibody directed at the N-terminus, was prepared in solutions of 0.316, 1, 3.16, 10, and 50 μg in vehicle, and delivered intravitreally to the right eye of six rhesus monkeys, respectively. Left eyes were injected with vehicle only. The pupillary light reflex (PLR), the ipRGC-driven post illumination pupil response (PIPR), and electroretinograms (ERGs) were recorded before and after injection. For pupil measurements, 1 and 5 s pulses of light were presented to the dilated right eye while the left pupil was imaged. Stimulation included 651 nm (133 cd/m2), and 4 intensities of 456 nm (16-500 cd/m2) light. Maximum pupil constriction and the 6 s PIPR were calculated. Retinal imaging was performed with optical coherence tomography (OCT), and eyes underwent OPN4 immunohistochemistry to evaluate immunotoxin specificity and ipRGC loss. Results: Before injection, animals showed robust pupil responses to 1 and 5 s blue light. After injection, baseline pupil size increased 12 ± 17%, maximum pupil constriction decreased, and the PIPR, a marker of ipRGC activity, was eliminated in all but the lowest immunotoxin concentration. For the highest concentrations, some inflammation and structural changes were observed with OCT, while eyes injected with lower concentrations appeared normal. ERG responses showed better preserved retinal function with lower concentrations. Immunohistochemistry showed 80-100% ipRGC elimination with the higher doses being more effective; however this could be partly due to inflammation that occurred at the higher concentrations. Conclusion: Findings demonstrated that the OPN4 macaque immunotoxin was specific for ipRGCs, and induced a graded reduction in the PLR, as well as, in ipRGC-driven pupil response with concentration. Further investigation of the effects of ipRGC ablation on ocular and systemic circadian rhythms and the pupil in rhesus monkeys will provide a better understanding of the role of ipRGCs in primates.


Risk Factors for Revision Anterior Cruciate Ligament Reconstruction and Frequency With Which Patients Change Surgeons.

  • Kirsty Sutherland‎ et al.
  • Orthopaedic journal of sports medicine‎
  • 2019‎

Revision surgery is a known complication after anterior cruciate ligament (ACL) reconstruction (ACLR), but the proportion of patients who seek a different surgeon for their revision procedure is unknown.


Multiple bacteria associated with the more dysbiotic genitourinary microbiomes in patients with type 2 diabetes mellitus.

  • Hua Zha‎ et al.
  • Scientific reports‎
  • 2021‎

Type 2 diabetes mellitus (T2DM) influences the human health and can cause significant illnesses. The genitourinary microbiome profiles in the T2DM patients remain poorly understood. In the current study, a series of bioinformatic and statistical analyses were carried out to determine the multiple bacteria associated with the more dysbiotic genitourinary microbiomes (i.e., those with lower dysbiosis ratio) in T2DM patients, which were sequenced by Illumina-based 16S rRNA gene amplicon sequencing. All the genitourinary microbiomes from 70 patients with T2DM were clustered into three clusters of microbiome profiles, i.e., Cluster_1_T2DM, Cluster_2_T2DM and Cluster_3_T2DM, with Cluster_3_T2DM at the most dysbiotic genitourinary microbial status. The three clustered T2DM microbiomes were determined with different levels of alpha diversity indices, and driven by distinct urinalysis variables. OTU12_Clostridiales and OTU28_Oscillospira were likely to drive the T2DM microbiomes to more dysbiotic status, while OTU34_Finegoldia could play a vital role in maintaining the least dysbiotic T2DM microbiome (i.e., Cluster_1_T2DM). The functional metabolites K08300_ribonuclease E, K01223_6-phospho-beta-glucosidase and K00029_malate dehydrogenase (oxaloacetate-decarboxylating) (NADP+) were most associated with Cluster_1_T2DM, Cluster_2_T2DM and Cluster_3_T2DM, respectively. The characteristics and multiple bacteria associated with the more dysbiotic genitourinary microbiomes in T2DM patients may help with the better diagnosis and management of genitourinary dysbiosis in T2DM patients.


The Genomic and Epigenomic Landscape of Double-Negative Metastatic Prostate Cancer.

  • Arian Lundberg‎ et al.
  • Cancer research‎
  • 2023‎

Systemic targeted therapy in prostate cancer is primarily focused on ablating androgen signaling. Androgen deprivation therapy and second-generation androgen receptor (AR)-targeted therapy selectively favor the development of treatment-resistant subtypes of metastatic castration-resistant prostate cancer (mCRPC), defined by AR and neuroendocrine (NE) markers. Molecular drivers of double-negative (AR-/NE-) mCRPC are poorly defined. In this study, we comprehensively characterized treatment-emergent mCRPC by integrating matched RNA sequencing, whole-genome sequencing, and whole-genome bisulfite sequencing from 210 tumors. AR-/NE- tumors were clinically and molecularly distinct from other mCRPC subtypes, with the shortest survival, amplification of the chromatin remodeler CHD7, and PTEN loss. Methylation changes in CHD7 candidate enhancers were linked to elevated CHD7 expression in AR-/NE+ tumors. Genome-wide methylation analysis nominated Krüppel-like factor 5 (KLF5) as a driver of the AR-/NE- phenotype, and KLF5 activity was linked to RB1 loss. These observations reveal the aggressiveness of AR-/NE- mCRPC and could facilitate the identification of therapeutic targets in this highly aggressive disease.


Nonrandom γ-TuNA-dependent spatial pattern of microtubule nucleation at the Golgi.

  • Anna A W M Sanders‎ et al.
  • Molecular biology of the cell‎
  • 2017‎

Noncentrosomal microtubule (MT) nucleation at the Golgi generates MT network asymmetry in motile vertebrate cells. Investigating the Golgi-derived MT (GDMT) distribution, we find that MT asymmetry arises from nonrandom nucleation sites at the Golgi (hotspots). Using computational simulations, we propose two plausible mechanistic models of GDMT nucleation leading to this phenotype. In the "cooperativity" model, formation of a single GDMT promotes further nucleation at the same site. In the "heterogeneous Golgi" model, MT nucleation is dramatically up-regulated at discrete and sparse locations within the Golgi. While MT clustering in hotspots is equally well described by both models, simulating MT length distributions within the cooperativity model fits the data better. Investigating the molecular mechanism underlying hotspot formation, we have found that hotspots are significantly smaller than a Golgi subdomain positive for scaffolding protein AKAP450, which is thought to recruit GDMT nucleation factors. We have further probed potential roles of known GDMT-promoting molecules, including γ-TuRC-mediated nucleation activator (γ-TuNA) domain-containing proteins and MT stabilizer CLASPs. While both γ-TuNA inhibition and lack of CLASPs resulted in drastically decreased GDMT nucleation, computational modeling revealed that only γ-TuNA inhibition suppressed hotspot formation. We conclude that hotspots require γ-TuNA activity, which facilitates clustered GDMT nucleation at distinct Golgi sites.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: