Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 4 papers out of 4 papers

Positive selection of a CD36 nonsense variant in sub-Saharan Africa, but no association with severe malaria phenotypes.

  • Andrew E Fry‎ et al.
  • Human molecular genetics‎
  • 2009‎

The prevalence of CD36 deficiency in East Asian and African populations suggests that the causal variants are under selection by severe malaria. Previous analysis of data from the International HapMap Project indicated that a CD36 haplotype bearing a nonsense mutation (T1264G; rs3211938) had undergone recent positive selection in the Yoruba of Nigeria. To investigate the global distribution of this putative selection event, we genotyped T1264G in 3420 individuals from 66 populations. We confirmed the high frequency of 1264G in the Yoruba (26%). However, the 1264G allele is less common in other African populations and absent from all non-African populations without recent African admixture. Using long-range linkage disequilibrium, we studied two West African groups in depth. Evidence for recent positive selection at the locus was demonstrable in the Yoruba, although not in Gambians. We screened 70 variants from across CD36 for an association with severe malaria phenotypes, employing a case-control study of 1350 subjects and a family study of 1288 parent-offspring trios. No marker was significantly associated with severe malaria. We focused on T1264G, genotyping 10,922 samples from four African populations. The nonsense allele was not associated with severe malaria (pooled allelic odds ratio 1.0; 95% confidence interval 0.89-1.12; P = 0.98). These results suggest a range of possible explanations including the existence of alternative selection pressures on CD36, co-evolution between host and parasite or confounding caused by allelic heterogeneity of CD36 deficiency.


Mapping eQTLs with RNA-seq reveals novel susceptibility genes, non-coding RNAs and alternative-splicing events in systemic lupus erythematosus.

  • Christopher A Odhams‎ et al.
  • Human molecular genetics‎
  • 2017‎

Studies attempting to functionally interpret complex-disease susceptibility loci by GWAS and eQTL integration have predominantly employed microarrays to quantify gene-expression. RNA-Seq has the potential to discover a more comprehensive set of eQTLs and illuminate the underlying molecular consequence. We examine the functional outcome of 39 variants associated with Systemic Lupus Erythematosus (SLE) through the integration of GWAS and eQTL data from the TwinsUK microarray and RNA-Seq cohort in lymphoblastoid cell lines. We use conditional analysis and a Bayesian colocalisation method to provide evidence of a shared causal-variant, then compare the ability of each quantification type to detect disease relevant eQTLs and eGenes. We discovered the greatest frequency of candidate-causal eQTLs using exon-level RNA-Seq, and identified novel SLE susceptibility genes (e.g. NADSYN1 and TCF7) that were concealed using microarrays, including four non-coding RNAs. Many of these eQTLs were found to influence the expression of several genes, supporting the notion that risk haplotypes may harbour multiple functional effects. Novel SLE associated splicing events were identified in the T-reg restricted transcription factor, IKZF2, and other candidate genes (e.g. WDFY4) through asQTL mapping using the Geuvadis cohort. We have significantly increased our understanding of the genetic control of gene-expression in SLE by maximising the leverage of RNA-Seq and performing integrative GWAS-eQTL analysis against gene, exon, and splice-junction quantifications. We conclude that to better understand the true functional consequence of regulatory variants, quantification by RNA-Seq should be performed at the exon-level as a minimum, and run in parallel with gene and splice-junction level quantification.


Age-dependent changes in mean and variance of gene expression across tissues in a twin cohort.

  • Ana Viñuela‎ et al.
  • Human molecular genetics‎
  • 2018‎

Changes in the mean and variance of gene expression with age have consequences for healthy aging and disease development. Age-dependent changes in phenotypic variance have been associated with a decline in regulatory functions leading to increase in disease risk. Here, we investigate age-related mean and variance changes in gene expression measured by RNA-seq of fat, skin, whole blood and derived lymphoblastoid cell lines (LCLs) expression from 855 adult female twins. We see evidence of up to 60% of age effects on transcription levels shared across tissues, and 47% of those on splicing. Using gene expression variance and discordance between genetically identical MZ twin pairs, we identify 137 genes with age-related changes in variance and 42 genes with age-related discordance between co-twins; implying the latter are driven by environmental effects. We identify four eQTLs whose effect on expression is age-dependent (FDR 5%). Combined, these results show a complicated mix of environmental and genetically driven changes in expression with age. Using the twin structure in our data, we show that additive genetic effects explain considerably more of the variance in gene expression than aging, but less that other environmental factors, potentially explaining why reliable expression-derived biomarkers for healthy-aging have proved elusive compared with those derived from methylation.


A genome-wide association study of intra-ocular pressure suggests a novel association in the gene FAM125B in the TwinsUK cohort.

  • Abhishek Nag‎ et al.
  • Human molecular genetics‎
  • 2014‎

Glaucoma is a major cause of blindness in the world. To date, common genetic variants associated with glaucoma only explain a small proportion of its heritability. We performed a genome-wide association study of intra-ocular pressure (IOP), an underlying endophenotype for glaucoma. The discovery phase of the study was carried out in the TwinsUK cohort (N = 2774) analyzing association between IOP and single nucleotide polymorphisms (SNPs) imputed to HapMap2. The results were validated in 12 independent replication cohorts of European ancestry (combined N = 22 789) that were a part of the International Glaucoma Genetics Consortium. Expression quantitative trait locus (eQTL) analyses of the significantly associated SNPs were performed using data from the Multiple Tissue Human Expression Resource (MuTHER) Study. In the TwinsUK cohort, IOP was significantly associated with a number of SNPs at 9q33.3 (P = 3.48 × 10(-8) for rs2286885, the most significantly associated SNP at this locus), within the genomic sequence of the FAM125B gene. Independent replication in a composite panel of 12 cohorts revealed consistent direction of effect and significant association (P = 0.003, for fixed-effect meta-analysis). Suggestive evidence for an eQTL effect of rs2286885 was observed for one of the probes targeting the coding region of the FAM125B gene. This gene codes for a component of a membrane complex involved in vesicular trafficking process, a function similar to that of the Caveolin genes (CAV1 and CAV2) which have previously been associated with primary open-angle glaucoma. This study suggests a novel association between SNPs in FAM125B and IOP in the TwinsUK cohort, though further studies to elucidate the functional role of this gene in glaucoma are necessary.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: