Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 8 papers out of 8 papers

Towards a comprehensive approach for characterizing cell activity in bright-field microscopic images.

  • Stefan Baar‎ et al.
  • Scientific reports‎
  • 2022‎

When studying physical cellular response observed by light microscopy, variations in cell behavior are difficult to quantitatively measure and are often only discussed on a subjective level. Hence, cell properties are described qualitatively based on a researcher's impressions. In this study, we aim to define a comprehensive approach to estimate the physical cell activity based on migration and morphology based on statistical analysis of a cell population within a predefined field of view and timespan. We present quantitative measurements of the influence of drugs such as cytochalasin D and taxol on human neuroblastoma, SH-SY5Y cell populations. Both chemicals are well known to interact with the cytoskeleton and affect the cell morphology and motility. Being able to compute the physical properties of each cell for a given observation time, requires precise localization of each cell even when in an adhesive state, where cells are not visually differentiable. Also, the risk of confusion through contaminants is desired to be minimized. In relation to the cell detection process, we have developed a customized encoder-decoder based deep learning cell detection and tracking procedure. Further, we discuss the accuracy of our approach to quantify cell activity and its viability in regard to the cell detection accuracy.


Structural analysis of TIFA: Insight into TIFA-dependent signal transduction in innate immunity.

  • Teruya Nakamura‎ et al.
  • Scientific reports‎
  • 2020‎

TRAF-interacting protein with a forkhead-associated (FHA) domain (TIFA), originally identified as an adaptor protein of TRAF6, has recently been shown to be involved in innate immunity, induced by a pathogen-associated molecular pattern (PAMP). ADP-β-D-manno-heptose, a newly identified PAMP, binds to alpha-kinase 1 (ALPK1) and activates its kinase activity to phosphorylate TIFA. Phosphorylation triggers TIFA oligomerisation and formation of a subsequent TIFA-TRAF6 oligomeric complex for ubiquitination of TRAF6, eventually leading to NF-κB activation. However, the structural basis of TIFA-dependent TRAF6 signalling, especially oligomer formation of the TIFA-TRAF6 complex remains unknown. In the present study, we determined the crystal structures of mouse TIFA and two TIFA mutants-Thr9 mutated to either Asp or Glu to mimic the phosphorylation state-to obtain the structural information for oligomer formation of the TIFA-TRAF6 complex. Crystal structures show the dimer formation of mouse TIFA to be similar to that of human TIFA, which was previously reported. This dimeric structure is consistent with the solution structure obtained from small angle X-ray scattering analysis. In addition to the structural analysis, we examined the molecular assembly of TIFA and the TIFA-TRAF6 complex by size-exclusion chromatography, and suggested a model for the TIFA-TRAF6 signalling complex.


Clinical implication of oncogenic somatic mutations in early-stage cervical cancer with radical hysterectomy.

  • Takafumi Watanabe‎ et al.
  • Scientific reports‎
  • 2020‎

It is well known that tumour initiation and progression are primarily an accumulation of genetic mutations. The mutation status of a tumour may predict prognosis and enable better selection of targeted therapies. In the current study, we analysed a total of 55 surgical tumours from stage IB-IIB cervical cancer (CC) patients who had undergone radical hysterectomy including pelvic lymphadenectomy, using a cancer panel covering 50 highly mutated tumorigenesis-related genes. In 35 patients (63.6%), a total 52 mutations were detected (58.3% in squamous cell carcinoma, 73.7% in adenocarcinoma), mostly in PIK3CA (34.5%) and KRAS and TP53 (9.1%). Being mutation-positive was significantly correlated with pelvic lymph node (PLN) metastasis (P = 0.035) and tended to have a worse overall survival (P = 0.076). In particular, in the patients with squamous cell carcinoma, there was a significant association between being mutation-positive and relapse-free survival (P = 0.041). The patients with PLN metastasis had a significantly worse overall survival than those without (P = 0.006). These results indicate that somatic mutation status is a predictive biomarker for PLN metastasis in early-stage CC, and is consequently related to poor prognosis. Therefore, comprehensive genetic mutations, rather than a single genetic mutation, should be examined widely in order to identify novel genetic indicators with clinical usefulness.


IER5 generates a novel hypo-phosphorylated active form of HSF1 and contributes to tumorigenesis.

  • Yoshinori Asano‎ et al.
  • Scientific reports‎
  • 2016‎

The transcription factors HSF1 and p53 both modulate the stress response, thereby protecting and facilitating the recovery of stressed cells, but both have the potential to promote tumor development. Here we show that a p53 target gene, IER5, encodes an activator of HSF1. IER5 forms a ternary complex with HSF1 and the phosphatase PP2A, and promotes the dephosphorylation of HSF1 at numbers of serine and threonine residues, generating a novel, hypo-phosphorylated active form of HSF1. IER5 is also transcriptionally upregulated in various cancers, although this upregulation is not always p53-dependent. The IER5 locus is associated with a so-called super enhancer, frequently associated with hyperactivated oncogenes in cancer cell lines. Enhanced expression of IER5 induces abnormal HSF1 activation in cancer cells and contributes to the proliferation of these cells under stressed conditions. These results reveal the existence of a novel IER5-mediated cancer regulation pathway that is responsible for the activation of HSF1 observed in various cancers.


Association of mprF mutations with cross-resistance to daptomycin and vancomycin in methicillin-resistant Staphylococcus aureus (MRSA).

  • Kanate Thitiananpakorn‎ et al.
  • Scientific reports‎
  • 2020‎

We first reported a phenomenon of cross-resistance to vancomycin (VCM) and daptomycin (DAP) in methicillin-resistant Staphylococcus aureus (MRSA) in 2006, but mechanisms underlying the cross-resistance remain incompletely understood. Here, we present a follow-up study aimed to investigate genetic determinants associated with the cross-resistance. Using 12 sets of paired DAP susceptible (DAPS) and DAP non-susceptible (DAPR) MRSA isolates from 12 patients who had DAP therapy, we (i) assessed susceptibility to DAP and VCM, (ii) compared whole-genome sequences, (iii) identified mutations associated with cross-resistance to DAP and VCM, and (iv) investigated the impact of altered gene expression and metabolic pathway relevant to the cross-resistance. We found that all 12 DAPR strains exhibiting cross-resistance to DAP and VCM carried mutations in mprF, while one DAPR strain with reduced susceptibility to only DAP carried a lacF mutation. On the other hand, among the 32 vancomycin-intermediate S. aureus (VISA) strains isolated from patients treated with VCM, five out of the 18 strains showing cross-resistance to DAP and VCM carried a mprF mutation, while 14 strains resistant to only VCM had no mprF mutation. Moreover, substitution of mprF in a DAPS strain with mutated mprF resulted in cross-resistance and vice versa. The elevated lysyl-phosphatidylglycerol (L-PG) production, increased positive bacterial surface charges and activated cell wall (CW) synthetic pathways were commonly found in both clinical isolates and laboratory-developed mutants that carry mprF mutations. We conclude that mprF mutation is responsible for the cross-resistance of MRSA to DAP and VCM, and treatment with DAP is more likely to select for mprF-mediated cross-resistance than is with VCM.


Type I neuregulin1α is a novel local mediator to suppress hepatic gluconeogenesis in mice.

  • Takatomo Arai‎ et al.
  • Scientific reports‎
  • 2017‎

Neuregulin1 is an epidermal growth factor (EGF)-like domain-containing protein that has multiple isoforms and functions as a local mediator in the control of various cellular functions. Here we show that type I isoform of neuregulin1 with an α-type EGF-like domain (Nrg1α) is the major isoform in mouse liver and regulates hepatic glucose production. Forced expression of Nrg1α in mouse liver enhanced systemic glucose disposal and decreased hepatic glucose production with reduced fasting blood glucose levels. Nuclear forkhead box protein O1 (FoxO1) and its downstream targets, PEPCK and G6Pase, were suppressed in liver and isolated hepatocytes by Nrg1α overexpression. In contrast, silencing of Nrg1α enhanced glucose production with increased PEPCK and G6Pase expressions in cAMP/dexamethasone-stimulated hepatocytes. Mechanistically, the recombinant α-type EGF-like domain of NRG1α (rNRG1α) stimulated the ERBB3 signalling pathway in hepatocytes, resulting in decreased nuclear FoxO1 accumulation via activation of both the AKT and ERK pathways. In addition, acute treatment with rNRG1α also suppressed elevation of blood glucose levels after both glucose and pyruvate challenge. Although a liver-specific deletion of Nrg1 gene in mice showed little effect on systemic glucose metabolism, these results suggest that NRG1α have a novel regulatory function in hepatic gluconeogenesis by regulating the ERBB3-AKT/ERK-FoxO1 cascade.


The cell competition-based high-throughput screening identifies small compounds that promote the elimination of RasV12-transformed cells from epithelia.

  • Hajime Yamauchi‎ et al.
  • Scientific reports‎
  • 2015‎

Recent studies have revealed that cell competition can occur between normal and transformed epithelial cells; normal epithelial cells recognize the presence of the neighboring transformed cells and actively eliminate them from epithelial tissues. Here, we have established a brand-new high-throughput screening platform that targets cell competition. By using this platform, we have identified Rebeccamycin as a hit compound that specifically promotes elimination of RasV12-transformed cells from the epithelium, though after longer treatment it shows substantial cytotoxic effect against normal epithelial cells. Among several Rebeccamycin-derivative compounds, we have found that VC1-8 has least cytotoxicity against normal cells but shows the comparable effect on the elimination of transformed cells. This cell competition-promoting activity of VC1-8 is observed both in vitro and ex vivo. These data demonstrate that the cell competition-based screening is a promising tool for the establishment of a novel type of cancer preventive medicine.


Identification and characterization of mutations responsible for the β-lactam resistance in oxacillin-susceptible mecA-positive Staphylococcus aureus.

  • Tanit Boonsiri‎ et al.
  • Scientific reports‎
  • 2020‎

Staphylococcus aureus strains that are susceptible to the β-lactam antibiotic oxacillin despite carrying mecA (OS-MRSA) cause serious clinical problems globally because of their ability to easily acquire β-lactam resistance. Understanding the genetic mechanism(s) of acquisition of the resistance is therefore crucial for infection control management. For this purpose, a whole-genome sequencing-based analysis was performed using 43 clinical OS-MRSA strains and 100 mutants with reduced susceptibility to oxacillin (MICs 1.0-256 µg/mL) generated from 26 representative OS-MRSA strains. Genome comparison between the mutants and their respective parent strains identified a total of 141 mutations in 46 genes and 8 intergenic regions. Among them, the mutations are frequently found in genes related to RNA polymerase (rpoBC), purine biosynthesis (guaA, prs, hprT), (p)ppGpp synthesis (relSau), glycolysis (pykA, fbaA, fruB), protein quality control (clpXP, ftsH), and tRNA synthase (lysS, gltX), whereas no mutations existed in mec and bla operons. Whole-genome transcriptional profile of the resistant mutants demonstrated that expression of genes associated with purine biosynthesis, protein quality control, and tRNA synthesis were significantly inhibited similar to the massive transcription downregulation seen in S. aureus during the stringent response, while the levels of mecA expression and PBP2a production were varied. We conclude that a combination effect of mecA upregulation and stringent-like response may play an important role in acquisition of β-lactam resistance in OS-MRSA.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: