Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 2 papers out of 2 papers

State of the Art for Microhaplotypes.

  • Kenneth K Kidd‎ et al.
  • Genes‎
  • 2022‎

In recent years, the number of publications on microhaplotypes has averaged more than a dozen papers annually. Many have contributed to a significant increase in the number of highly polymorphic microhaplotype loci. This increase allows microhaplotypes to be very informative in four main areas of forensic uses of DNA: individualization, ancestry inference, kinship analysis, and mixture deconvolution. The random match Probability (RMP) can be as small as 10−100 for a large panel of microhaplotypes. It is possible to measure the heterozygosity of an MH as the effective number of alleles (Ae). Ae > 7.5 exists for African populations and >4.5 exists for Native American populations for a smaller panel of two dozen selected microhaplotypes. Using STRUCTURE, at least 10 different ancestral clusters can be defined by microhaplotypes. The Ae for a locus is also identical to the Paternity Index (PI), the measure of how informative a locus will be in parentage testing. High Ae loci can also be useful in missing persons cases. Finally, high Ae microhaplotypes allow the near certainty of seeing multiple additional alleles in a mixture of two or more individuals in a DNA sample. In summary, a panel of higher Ae microhaplotypes can outperform the standard CODIS markers.


Recent Selection on a Class I ADH Locus Distinguishes Southwest Asian Populations Including Ashkenazi Jews.

  • Sheng Gu‎ et al.
  • Genes‎
  • 2018‎

The derived human alcohol dehydrogenase (ADH)1B*48His allele of the ADH1B Arg48His polymorphism (rs1229984) has been identified as one component of an East Asian specific core haplotype that underwent recent positive selection. Our study has been extended to Southwest Asia and additional markers in East Asia. Fst values (Sewall Wright's fixation index) and long-range haplotype analyses identify a strong signature of selection not only in East Asian but also in Southwest Asian populations. However, except for the ADH2B*48His allele, different core haplotypes occur in Southwest Asia compared to East Asia and the extended haplotypes also differ. Thus, the ADH1B*48His allele, as part of a core haplotype of 10 kb, has undergone recent rapid increases in frequency independently in the two regions after divergence of the respective populations. Emergence of agriculture may be the common factor underlying the evident selection.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: