Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 6 papers out of 6 papers

Leptomeningeal metastases in a patient with an extragonadal germ cell tumor.

  • Yoshiaki Kinebuchi‎ et al.
  • Clinical medicine. Oncology‎
  • 2008‎

We present a case of leptomeningeal metastases in a 30-year-old man with an extragonadal germ cell tumor. The patient was referred to our hospital for treatment of an occipital brain metastasis. This lesion was resected, followed by whole brain radiotherapy and further chemotherapy, and a temporary complete remission was achieved. However, leptomeningeal recurrence developed, and despite salvage chemotherapy, the patient died of disease. Although multidisciplinary treatment is given to treat brain metastases of germ cell tumors, the patients' prognosis has been unsatisfactory. The identification of a standard/effective treatment is required.


Basalt derived from highly refractory mantle sources during early Izu-Bonin-Mariana arc development.

  • He Li‎ et al.
  • Nature communications‎
  • 2021‎

The magmatic character of early subduction zone and arc development is unlike mature systems. Low-Ti-K tholeiitic basalts and boninites dominate the early Izu-Bonin-Mariana (IBM) system. Basalts recovered from the Amami Sankaku Basin (ASB), underlying and located west of the IBM's oldest remnant arc, erupted at ~49 Ma. This was 3 million years after subduction inception (51-52 Ma) represented by forearc basalt (FAB), at the tipping point between FAB-boninite and typical arc magmatism. We show ASB basalts are low-Ti-K, aluminous spinel-bearing tholeiites, distinct compared to mid-ocean ridge (MOR), backarc basin, island arc or ocean island basalts. Their upper mantle source was hot, reduced, refractory peridotite, indicating prior melt extraction. ASB basalts transferred rapidly from pressures (~0.7-2 GPa) at the plagioclase-spinel peridotite facies boundary to the surface. Vestiges of a polybaric-polythermal mineralogy are preserved in this basalt, and were not obliterated during persistent recharge-mix-tap-fractionate regimes typical of MOR or mature arcs.


Design of a single-arm clinical trial of regenerative therapy by periurethral injection of adipose-derived regenerative cells for male stress urinary incontinence in Japan: the ADRESU study protocol.

  • Shinobu Shimizu‎ et al.
  • BMC urology‎
  • 2017‎

Male stress urinary incontinence is a prevalent condition after radical prostatectomy. While the standard recommendation for the management of urine leakage is pelvic floor muscle training, its efficacy is still unsatisfactory. Therefore, we have focused on regenerative therapy, which consists of administering a periurethral injection of autologous regenerative cells from adipose tissue, separated using the Celution® system. Based on an interim data analysis of our exploratory study, we confirmed the efficacy and acceptable safety profile of this treatment. Accordingly, we began discussions with Japanese regulatory authorities regarding the development of this therapy in Japan. The Ministry of Health, Labour and Welfare suggested that we implement a clinical trial of a new medical device based on the Pharmaceutical Affaires Act in Japan. Next, we discussed the design of this investigator-initiated clinical trial (the ADRESU study) aimed at evaluating the efficacy and safety of this therapy, in a consultation meeting with the Pharmaceuticals and Medical Device Agency.


FGF2 Has Distinct Molecular Functions from GDNF in the Mouse Germline Niche.

  • Kaito Masaki‎ et al.
  • Stem cell reports‎
  • 2018‎

Both glial cell line-derived neurotrophic factor (GDNF) and fibroblast growth factor 2 (FGF2) are bona fide self-renewal factors for spermatogonial stem cells, whereas retinoic acid (RA) induces spermatogonial differentiation. In this study, we investigated the functional differences between FGF2 and GDNF in the germline niche by providing these factors using a drug delivery system in vivo. Although both factors expanded the GFRA1+ subset of undifferentiated spermatogonia, the FGF2-expanded subset expressed RARG, which is indispensable for proper differentiation, 1.9-fold more frequently than the GDNF-expanded subset, demonstrating that FGF2 expands a differentiation-prone subset in the testis. Moreover, FGF2 acted on the germline niche to suppress RA metabolism and GDNF production, suggesting that FGF2 modifies germline niche functions to be more appropriate for spermatogonial differentiation. These results suggest that FGF2 contributes to induction of differentiation rather than maintenance of undifferentiated spermatogonia, indicating reconsideration of the role of FGF2 in the germline niche.


Functional and histologic imaging of urinary bladder wall after exposure to psychological stress and protamine sulfate.

  • Tetsuichi Saito‎ et al.
  • Scientific reports‎
  • 2021‎

To quantify the urinary bladder wall T1 relaxation time (T1) before and after the instillation contrast mixture in rats previously subjected to water avoidance stress (WAS) and/or acute exposure to protamine sulfate (PS). Female Wistar rats were randomized to receive either sham (control) or 1 h of WAS for ten consecutive days before the evaluation of nocturnal urination pattern in metabolic cages. T1 mapping of urinary bladder wall at 9.4 T was performed pre- and post- instillation of 4 mM Gadobutrol in a mixture with 5 mM Ferumoxytol. Subsequently, either T1 mapping was repeated after brief intravesical PS exposure or the animals were sacrificed for histology and analyzing the mucosal levels of mRNA. Compared to the control group, WAS exposure decreased the single void urine volume and shortened the post-contrast T1 relaxation time of mucosa- used to compute relatively higher ingress of instilled Gadobutrol. Compromised permeability in WAS group was corroborated by the urothelial denudation, edema and ZO-1 downregulation. PS exposure doubled the baseline ingress of Gadobutrol in both groups. These findings confirm that psychological stress compromises the paracellular permeability of bladder mucosa and its non-invasive assay with MRI was validated by PS exposure.


Expression dynamics of self-renewal factors for spermatogonial stem cells in the mouse testis.

  • Mizuki Sakai‎ et al.
  • The Journal of reproduction and development‎
  • 2018‎

Glial cell line-derived neurotrophic factor (GDNF) and fibroblast growth factor 2 (FGF2) are bona fide self-renewal factors for spermatogonial stem cells (SSCs). Although GDNF is indispensable for the maintenance of SSCs, the role of FGF2 in the testis remains to be elucidated. To clarify this, the expression dynamics and regulatory mechanisms of Fgf2 and Gdnf in the mouse testes were analyzed. It is well known that Sertoli cells express Gdnf, and its receptor is expressed in a subset of undifferentiated spermatogonia, including SSCs. However, we found that Fgf2 was mainly expressed in the germ cells and its receptors were expressed not only in the cultured spermatogonial cell line, but also in testicular somatic cells. Aging, hypophysectomy, retinoic acid treatment, and testicular injury induced distinct Fgf2 and Gdnf expression dynamics, suggesting a difference in the expression mechanism of Fgf2 and Gdnf in the testis. Such differences might cause a dynamic fluctuation of Gdnf/Fgf2 ratio depending on the intrinsic/extrinsic cues. Considering that FGF2-cultured spermatogonia exhibit more differentiated phenotype than those cultured with GDNF, FGF2 might play a role distinct from that of GDNF in the testis, despite the fact that both factors are self-renewal factor for SSC in vitro.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: