Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 5 papers out of 5 papers

Hue Selectivity in Human Visual Cortex Revealed by Functional Magnetic Resonance Imaging.

  • Ichiro Kuriki‎ et al.
  • Cerebral cortex (New York, N.Y. : 1991)‎
  • 2015‎

The variability of color-selective neurons in human visual cortex is considered more diverse than cone-opponent mechanisms. We addressed this issue by deriving histograms of hue-selective voxels measured using fMRI with a novel stimulation paradigm, where the stimulus hue changed continuously. Despite the large between-subject difference in hue-selective histograms, individual voxels exhibited selectivity for intermediate hues, such as purple, cyan, and orange, in addition to those along cone-opponent axes. In order to rule the possibility out that the selectivity for intermediate hues emerged through spatial summation of activities of neurons selectively responding to cone-opponent signals, we further tested hue-selective adaptations in intermediate directions of cone-opponent axes, by measuring responses to 4 diagonal hues during concurrent adaptation to 1 of the 4 hues. The selective and unidirectional reduction in response to the adapted hue lends supports to our argument that cortical neurons respond selectively to intermediate hues.


Auditory observation of infant-directed speech by mothers: experience-dependent interaction between language and emotion in the basal ganglia.

  • Yoshi-Taka Matsuda‎ et al.
  • Frontiers in human neuroscience‎
  • 2014‎

Adults address infants with a special speech register known as infant-directed speech (IDS), which conveys both linguistic and emotional information through its characteristic lexicon and exaggerated prosody (e.g., higher pitched, slower, and hyperarticulated). Although caregivers are known to regulate the usage of IDS (linguistic and emotional components) depending on their child's development, the underlying neural substrates of this flexible modification are largely unknown. Here, using an auditory observation method and functional magnetic resonance imaging (fMRI) of four different groups of females, we revealed the experience-dependent influence of the emotional component on linguistic processing in the right caudate nucleus when mothers process IDS: (1) non-mothers, who do not use IDS regularly, showed no significant difference between IDS and adult-directed speech (ADS); (2) mothers with preverbal infants, who primarily use the emotional component of IDS, showed the main effect of the emotional component of IDS; (3) mothers with toddlers at the two-word stage, who use both linguistic and emotional components of IDS, showed an interaction between the linguistic and emotional components of IDS; and (4) mothers with school-age children, who use ADS rather than IDS toward their children, showed a tendency toward the main effect of ADS. The task that was most comparable to the naturalistic categories of IDS (i.e., explicit-language and implicit-emotion processing) recruited the right caudate nucleus, but it was not recruited in the control, less naturalistic condition (explicit-emotion and implicit-language processing). Our results indicate that the right caudate nucleus processes experience-and task-dependent interactions between language and emotion in mothers' IDS.


The implicit processing of categorical and dimensional strategies: an fMRI study of facial emotion perception.

  • Yoshi-Taka Matsuda‎ et al.
  • Frontiers in human neuroscience‎
  • 2013‎

OUR UNDERSTANDING OF FACIAL EMOTION PERCEPTION HAS BEEN DOMINATED BY TWO SEEMINGLY OPPOSING THEORIES: the categorical and dimensional theories. However, we have recently demonstrated that hybrid processing involving both categorical and dimensional perception can be induced in an implicit manner (Fujimura etal., 2012). The underlying neural mechanisms of this hybrid processing remain unknown. In this study, we tested the hypothesis that separate neural loci might intrinsically encode categorical and dimensional processing functions that serve as a basis for hybrid processing. We used functional magnetic resonance imaging to measure neural correlates while subjects passively viewed emotional faces and performed tasks that were unrelated to facial emotion processing. Activity in the right fusiform face area (FFA) increased in response to psychologically obvious emotions and decreased in response to ambiguous expressions, demonstrating the role of the FFA in categorical processing. The amygdala, insula and medial prefrontal cortex exhibited evidence of dimensional (linear) processing that correlated with physical changes in the emotional face stimuli. The occipital face area and superior temporal sulcus did not respond to these changes in the presented stimuli. Our results indicated that distinct neural loci process the physical and psychological aspects of facial emotion perception in a region-specific and implicit manner.


Computing Social Value Conversion in the Human Brain.

  • Haruaki Fukuda‎ et al.
  • The Journal of neuroscience : the official journal of the Society for Neuroscience‎
  • 2019‎

Social signals play powerful roles in shaping self-oriented reward valuation and decision making. These signals activate social and valuation/decision areas, but the core computation for their integration into the self-oriented decision machinery remains unclear. Here, we study how a fundamental social signal, social value (others' reward value), is converted into self-oriented decision making in the human brain. Using behavioral analysis, modeling, and neuroimaging, we show three-stage processing of social value conversion from the offer to the effective value and then to the final decision value. First, a value of others' bonus on offer, called offered value, was encoded uniquely in the right temporoparietal junction (rTPJ) and also in the left dorsolateral prefrontal cortex (ldlPFC), which is commonly activated by offered self-bonus value. The effective value, an intermediate value representing the effective influence of the offer on the decision, was represented in the right anterior insula (rAI), and the final decision value was encoded in the medial prefrontal cortex (mPFC). Second, using psychophysiological interaction and dynamic causal modeling analyses, we demonstrated three-stage feedforward processing from the rTPJ and ldPFC to the rAI and then from rAI to the mPFC. Further, we showed that these characteristics of social conversion underlie distinct sociobehavioral phenotypes. We demonstrate that the variability in the conversion underlies the difference between prosocial and selfish subjects, as seen from the differential strength of the rAI and ldlPFC coupling to the mPFC responses, respectively. Together, these findings identified fundamental neural computation processes for social value conversion underlying complex social decision making behaviors.SIGNIFICANCE STATEMENT In daily life, we make decisions based on self-interest, but also in consideration for others' status. These social influences modulate valuation and decision signals in the brain, suggesting a fundamental process called value conversion that translates social information into self-referenced decisions. However, little is known about the conversion process and its underlying brain mechanisms. We investigated value conversion using human fMRI with computational modeling and found three essential stages in a progressive brain circuit from social to empathic and decision areas. Interestingly, the brain mechanism of conversion differed between prosocial and individualistic subjects. These findings reveal how the brain processes and merges social information into the elemental flow of self-interested decision making.


Cerebellar activation associated with model-based estimation of tool-use consequences.

  • Sayako Ueda‎ et al.
  • Behavioral and brain functions : BBF‎
  • 2019‎

Dexterous tool use is considered to be underpinned by model-based control relying on acquired internal models of tools. In particular, this is the case in situations where available sensory feedback regarding the consequences of tool use is restricted. In the present study, we conducted an fMRI study to identify cerebellar involvement in model-based estimation of tool-use consequences using tracking tasks with different levels of visual feedback.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: