Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 16 papers out of 16 papers

Mesenchymal actomyosin contractility is required for androgen-driven urethral masculinization in mice.

  • Alvin R Acebedo‎ et al.
  • Communications biology‎
  • 2019‎

The morphogenesis of mammalian embryonic external genitalia (eExG) shows dynamic differences between males and females. In genotypic males, eExG are masculinized in response to androgen signaling. Disruption of this process can give rise to multiple male reproductive organ defects. Currently, mechanisms of androgen-driven sexually dimorphic organogenesis are still unclear. We show here that mesenchymal-derived actomyosin contractility, by MYH10, is essential for the masculinization of mouse eExG. MYH10 is expressed prominently in the bilateral mesenchyme of male eExG. Androgen induces MYH10 protein expression and actomyosin contractility in the bilateral mesenchyme. Inhibition of actomyosin contractility through blebbistatin treatment and mesenchymal genetic deletion induced defective urethral masculinization with reduced mesenchymal condensation. We also suggest that actomyosin contractility regulates androgen-dependent mesenchymal directional cell migration to form the condensation in the bilateral mesenchyme leading to changes in urethral plate shape to accomplish urethral masculinization. Thus, mesenchymal-derived actomyosin contractility is indispensable for androgen-driven urethral masculinization.


Induction of matrix metalloproteinase-2 by tenascin-X deficiency is mediated through the c-Jun N-terminal kinase and protein tyrosine kinase phosphorylation pathway.

  • Ken-Ichi Matsumoto‎ et al.
  • Experimental cell research‎
  • 2004‎

The results of our previous study showed that tumor invasion and metastasis are promoted in extracellular matrix (ECM) tenascin-X-deficient (TNX-/-) mice via increased expression of matrix metalloproteinases (MMPs). However, little is known about the relationship between TNX deficiency and activation of MMP genes. In this study, we investigated the molecular mechanism by which TNX deficiency activates the MMP-2 gene. We examined the intracellular signaling pathways that regulate gene expression of the proteinase in isolated fibroblasts. Results of gelatin zymography showed that MMP-2 was induced to a greater extent in TNX-/- fibroblasts embedded in type I collagen than in wild-type fibroblasts. RT-PCR analysis revealed that the increased level of MMP-2 expression was caused at the transcription level. Conversely, stable overexpression of TNX in a fibroblast cell line reduced MMP-2 expression and suppressed MMP-2 promoter activity. In addition, treatment of TNX-/- fibroblasts with SP600125, a c-Jun N-terminal kinase (JNK) inhibitor, and genistein, a tyrosine kinase inhibitor, suppressed the increased level of proMMP-2 and increased MMP-2 promoter activity in TNX-/- fibroblasts. Furthermore, increased activation of JNK and tyrosine phosphorylation of certain proteins were observed in TNX-/- fibroblasts. These findings suggest that induction of MMP-2 by TNX deficiency is mediated, at least in part, through the JNK and protein tyrosine kinase phosphorylation pathway.


Mechanical allodynia in mice with tenascin-X deficiency associated with Ehlers-Danlos syndrome.

  • Emiko Okuda-Ashitaka‎ et al.
  • Scientific reports‎
  • 2020‎

Tenascin-X (TNX) is a member of the extracellular matrix glycoprotein tenascin family, and TNX deficiency leads to Ehlers-Danlos syndrome, a heritable human disorder characterized mostly by skin hyperextensibility, joint hypermobility, and easy bruising. TNX-deficient patients complain of chronic joint pain, myalgia, paresthesia, and axonal polyneuropathy. However, the molecular mechanisms by which TNX deficiency complicates pain are unknown. Here, we examined the nociceptive behavioral responses of TNX-deficient mice. Compared with wild-type mice, TNX-deficient mice exhibited mechanical allodynia but not thermal hyperalgesia. TNX deficiency also increased pain sensitivity to chemical stimuli and aggravated early inflammatory pain elicited by formalin. TNX-deficient mice were significantly hypersensitive to transcutaneous sine wave stimuli at frequencies of 250 Hz (Aδ fiber responses) and 2000 Hz (Aβ fiber responses), but not to stimuli at frequency of 5 Hz (C fiber responses). In addition, the phosphorylation levels of extracellular signal-related kinase, an active neuronal marker, and the activity of NADPH-diaphorase, a neuronal nitric oxide activation marker, were enhanced in the spinal dorsal horns of TNX-deficient mice. These results suggest that TNX deficiency contributes to the development of mechanical allodynia and hypersensitivity to chemical stimuli, and it induces hypersensitization of myelinated A fibers and activation of the spinal dorsal horn.


Impairment of corneal epithelial wound healing is association with increased neutrophil infiltration and reactive oxygen species activation in tenascin X-deficient mice.

  • Takayoshi Sumioka‎ et al.
  • Laboratory investigation; a journal of technical methods and pathology‎
  • 2021‎

The purpose of the study was to uncover the role of tenascin X in modulation of healing in mouse corneas subjected to epithelium debridement. Healing in corneas with an epithelial defect was evaluated at the levels of gene and protein expression. Wound healing-related mediators and inflammatory cell infiltration were detected by histology, immunohistochemistry and real-time RT-PCR. Tenascin X protein was upregulated in the wounded wild-type (WT) corneal epithelium. The lack of tenascin X impaired closure of an epithelial defect and accelerated infiltration of neutrophils into the wound periphery as compared to the response in WT tissue. Expression of wound healing-related proinflammatory and reparative components, i.e., interleukin-6, transforming growth factor β, matrix metalloproteinases, were unaffected by the loss of tenascin X expression. Marked accumulation of malondialdehyde (a lipid peroxidation-derived product) was observed in KO healing epithelia as compared with its WT counterpart. Neutropenia induced by systemic administration of a specific antibody rescued the impairment of epithelial healing in KO corneas, with reduction of malondialdehyde levels in the epithelial cells. Finally, we showed that a chemical scavenging reactive oxygen species reversed the impairment of attenuation of epithelial repair with a reduction of tissue levels of malondialdehyde. In conclusion, loss of tenascin X prolonged corneal epithelial wound healing and increased neutrophilic inflammatory response to debridement in mice. Tenascin X contributes to the control of neutrophil infiltration needed to support the regenerative response to injury and prevent the oxidative stress mediators from rising to cytotoxic levels.


Absence of BRINP1 in mice causes increase of hippocampal neurogenesis and behavioral alterations relevant to human psychiatric disorders.

  • Miwako Kobayashi‎ et al.
  • Molecular brain‎
  • 2014‎

We have previously identified BRINP (BMP/RA-inducible neural-specific protein-1, 2, 3) family genes that possess the ability to suppress cell cycle progression in neural stem cells. Of the three family members, BRINP1 is the most highly expressed in various brain regions, including the hippocampus, in adult mice and its expression in dentate gyrus (DG) is markedly induced by neural activity. In the present study, we generated BRINP1-deficient (KO) mice to clarify the physiological functions of BRINP1 in the nervous system.


Plasma proteomic changes during therapeutic hypothermia in resuscitated patients after cardiac arrest.

  • Teiji Oda‎ et al.
  • Experimental and therapeutic medicine‎
  • 2019‎

Hypothermia is used for several h during cardiac and aortic surgery to protect ischemic organs. Therapeutic hypothermia (TH) is used for ≤24 h as a treatment for comatose patients after the return of spontaneous circulation (ROSC) following cardiac arrest. The proteomic approach may provide unbiased data on alterations in the abundance of proteins during TH. The objective of this study was to assess the effects of cooling/rewarming on the plasma proteome during TH after ROSC and to identify the mechanism underlying its therapeutic effects. A total of nine comatose adult patients, resuscitated shortly after cardiac arrest, were cooled to 34°C for 24 h and slowly rewarmed to 36°C. A quantitative gel-free proteomic analysis was performed using the isobaric tag for relative and absolute quantification labeling tandem mass spectrometry. Plasma samples were obtained prior to cooling and rewarming, and immediately after rewarming, from all patients during TH after ROSC. A total of 92 high-confidence proteins were identified. Statistically significant alterations were observed (>1.2-fold increase or <0.833-fold decrease) in the levels of 15 of those proteins (P=0.003-0.047), mainly proteins belonging to the acute-phase response or platelet degranulation. Unexpectedly, the levels of free hemoglobin (hemoglobin subunits α and β) were significantly downregulated during TH (P<0.05). The level of the terminal complement complex (SC5b-9) showed significant reduction after cooling (P=0.023). Although the acute-phase response proteins were upregulated, the abundance of complement proteins did not change, and the levels of SC5b-9 and free hemoglobin decreased during TH in patients after ROSC.


Loss of tenascin X gene function impairs injury-induced stromal angiogenesis in mouse corneas.

  • Takayoshi Sumioka‎ et al.
  • Journal of cellular and molecular medicine‎
  • 2018‎

To determine the contribution by tenascin X (Tnx) gene expression to corneal stromal angiogenesis, the effects were determined of its loss on this response in TNX knockout (KO) mice. In parallel, the effects of such a loss were evaluated on vascular endothelial growth factor (VEGF) and transforming growth factor β1 (TGFβ1) gene and protein expression in fibroblasts and macrophages in cell culture. Histological, immunohistochemical and quantitative RT-PCR changes determined if Tnx gene ablation on angiogenic gene expression, inflammatory cell infiltration and neovascularization induced by central corneal stromal cauterization. The role was determined of Tnx function in controlling VEGF-A or TGFβ1 gene expression by comparing their expression levels in ocular fibroblasts and macrophages obtained from wild-type (WT) and body-wide Tnx KO mice. Tnx was up-regulated in cauterized cornea. In Tnx KO, macrophage invasion was attenuated, VEGF-A and its cognate receptor mRNA expression along with neovascularization were lessened in Tnx KOs relative to the changes occurring in their WT counterpart. Loss of Tnx instead up-regulated in vivo mRNA expression of anti-angiogenic VEGF-B but not VEGF-A. On the other hand, TGFβ1 mRNA expression declined in Tnx KO cultured ocular fibroblasts. Loss of Tnx gene expression caused VEGF-A expression to decline in macrophages. Tnx gene expression contributes to promoting TGFβ1 mRNA expression in ocular fibroblasts and VEGF-A in macrophages, macrophage invasion, up-regulation of VEGF-A expression and neovascularization in an injured corneal stroma. On the other hand, it suppresses anti-angiogenic VEGF-B mRNA expression in vivo.


Hypersensitivity of myelinated A-fibers via toll-like receptor 5 promotes mechanical allodynia in tenascin-X-deficient mice associated with Ehlers-Danlos syndrome.

  • Hiroki Kamada‎ et al.
  • Scientific reports‎
  • 2023‎

Deficiency of an extracellular matrix glycoprotein tenascin-X (TNX) leads to a human heritable disorder Ehlers-Danlos syndrome, and TNX-deficient patients complain of chronic joint pain, myalgia, paresthesia, and axonal polyneuropathy. We previously reported that TNX-deficient (Tnxb-/-) mice exhibit mechanical allodynia and hypersensitivity to myelinated A-fibers. Here, we investigated the pain response of Tnxb-/- mice using pharmacological silencing of A-fibers with co-injection of N-(2,6-Dimethylphenylcarbamoylmethyl) triethylammonium bromide (QX-314), a membrane-impermeable lidocaine analog, plus flagellin, a toll-like receptor 5 (TLR5) ligand. Intraplantar co-injection of QX-314 and flagellin significantly increased the paw withdrawal threshold to transcutaneous sine wave stimuli at frequencies of 250 Hz (Aδ fiber responses) and 2000 Hz (Aβ fiber responses), but not 5 Hz (C fiber responses) in wild-type mice. The QX-314 plus flagellin-induced silencing of Aδ- and Aβ-fibers was also observed in Tnxb-/- mice. Co-injection of QX-314 and flagellin significantly inhibited the mechanical allodynia and neuronal activation of the spinal dorsal horn in Tnxb-/- mice. Interestingly, QX-314 alone inhibited the mechanical allodynia in Tnxb-/- mice, and it increased the paw withdrawal threshold to stimuli at frequencies of 250 Hz and 2000 Hz in Tnxb-/- mice, but not in wild-type mice. The inhibition of mechanical allodynia induced by QX-314 alone was blocked by intraplantar injection of a TLR5 antagonist TH1020 in Tnxb-/- mice. These results suggest that mechanical allodynia due to TNX deficiency is caused by the hypersensitivity of Aδ- and Aβ-fibers, and it is induced by constitutive activation of TLR5.


iTRAQ-based proteomic analysis after mesenchymal stem cell line transplantation for ischemic stroke.

  • Shingo Mitaki‎ et al.
  • Brain research‎
  • 2020‎

Transplantation with mesenchymal stem cells (MSCs) has been reported to promote functional recovery in animal models of ischemic stroke. However, the molecular mechanisms underlying the therapeutic effects of MSC transplantation have been only partially elucidated. The purpose of this study was to comprehensively identify changes in brain proteins in rats treated with MSCs for ischemic stroke, and to explore the multi-target mechanisms of MSCs using a proteomics-based strategy. Twenty-eight proteins were found to be differentially expressed following B10 MSC transplantation in adult male Wistar rats, as assessed using isobaric tagging for relative and absolute protein quantification (iTRAQ). Subsequent bioinformatic analysis revealed that these proteins were mainly associated with energy metabolism, glutamate excitotoxicity, oxidative stress, and brain structural and functional plasticity. Immunohistochemical staining revealed decreased expression of EAAT1 in the phosphate-buffered saline group as opposed to normal levels in the B10 transplantation group. Furthermore, ATP levels were also significantly higher in the B10 transplantation group, thus supporting the iTRAQ results. Our results suggest that the therapeutic effects of B10 transplantation might arise from the modulation of the acute ischemic cascade via multiple molecular pathways. Thus, our findings provide valuable clues to elucidate the mechanisms underlying the therapeutic effects of MSC transplantation in ischemic stroke.


Myristic acid selectively augments β-tubulin levels in C2C12 myotubes via diacylglycerol kinase δ.

  • Hiromichi Sakai‎ et al.
  • FEBS open bio‎
  • 2022‎

Effective amelioration of type II diabetes requires therapies that increase both glucose uptake activity per cell and skeletal muscle mass. Myristic acid (14:0) increases diacylglycerol kinase (DGK) δ protein levels and enhances glucose uptake in myotubes in a DGKδ-dependent manner. However, it is still unclear whether myristic acid treatment affects skeletal muscle mass. In this study, we found that myristic acid treatment increased the protein level of β-tubulin, which constitutes microtubules and is closely related to muscle mass, in C2C12 myotubes but not in the proliferation stage in C2C12 myoblasts. However, lauric (12:0), palmitic (16:0) and oleic (18:1) acids failed to affect DGKδ and β-tubulin protein levels in C2C12 myotubes. Moreover, knockdown of DGKδ by siRNA significantly inhibited the increased protein level of β-tubulin in the presence of myristic acid, suggesting that the increase in β-tubulin protein by myristic acid depends on DGKδ. These results indicate that myristic acid selectively affects β-tubulin protein levels in C2C12 myotubes via DGKδ, suggesting that this fatty acid improves skeletal muscle mass in addition to increasing glucose uptake activity per cell.


Tropomyosin micelles are the major components contributing to the white colour of boiled shellfish soups.

  • Takashi Akihiro‎ et al.
  • Scientific reports‎
  • 2022‎

Basket clam soup, a popular Asian dish, is prepared by boiling clams in hot water. The soup is generally cloudy, and it is considered that increased cloudiness enhances taste. However, the composition of the whitening ingredients and their association with taste enhancement remains unclear. In this study, we aimed to identify the components contributing to the white colour of the boiled soup. The white component upon precipitation with trichloroacetic acid reacted positively with ninhydrin, indicating the presence of proteins. The separation of proteins using sodium dodecyl sulphate-polyacrylamide gel electrophoresis revealed an intense band of size 33 kDa. Peptide mass fingerprinting of the identified protein using matrix-assisted laser desorption/ionisation-time-of-flight tandem mass spectrometry revealed the protein as tropomyosin. To validate the involvement of tropomyosin in the turbidity of the soup, tropomyosin was expressed and extracted from Escherichia coli. As expected, the purified protein suspended in water resulted in turbid appearance. To determine whether lipids have any association with the observed cloudiness of the soup, the amounts of fatty acids were measured. The proportion of estimated fatty acids was very low compared to that of proteins. Overall, we identified the major component contributing to soup cloudiness as tropomyosin forming micelles.


COL1A1 expression induced by overexpression of both a 15‑amino acid peptide from the fibrinogen domain of tenascin‑X and integrin α11 in LX‑2 cells.

  • Ken-Ichi Matsumoto‎ et al.
  • Molecular medicine reports‎
  • 2022‎

Extracellular matrix tenascin‑X (TNX) is the largest member of the tenascin family. Our previous study demonstrated that TNX was involved in hepatic dysfunction, including fibrosis, in mice that were administered a high‑fat and high‑cholesterol diet with high levels of phosphorus and calcium. The present study investigated whether overexpression of both the fibrinogen domain of TNX (TNX‑FG) and integrin α11, one of the TNX cell surface receptors, induces in vitro fibrosis in LX‑2 human hepatic stellate cells. Overexpression of both a 15‑amino acid peptide (hTNX‑FGFFFF) derived from the TNX‑FG domain and integrin α11 induced the expression of type I collagen α1 chain (COL1A1). Treatment with verteporfin [YAP (Yes‑associated protein) inhibitor] attenuated the elevated COL1A1 expression elicited by overexpression of both hTNX‑FGFFFF and integrin α11. In addition, small interfering RNA‑mediated knockdown of YAP1 resulted in a decrease in COL1A1 expression induced by overexpression of both hTNX‑FGFFFF and integrin α11. These results indicated that overexpression of both hTNX‑FGFFFF and integrin α11 induced COL1A1 expression via the YAP signaling pathway.


Proteomic profiling for the identification of serum diagnostic biomarkers for abdominal and thoracic aortic aneurysms.

  • Kazumi Satoh‎ et al.
  • Proteome science‎
  • 2013‎

Aortic aneurysm is an increasingly common vascular disorder with fatal implication. However, there is no established diagnosis other than that based on aneurysmal size. For this purpose, serum protein biomarkers for aortic aneurysms are valuable. Although most of the studies on serum biomarker discovery have been based on comparison of serum proteins from the patient group with those from the healthy group, we considered that comparison of serial protein profiles such as those in presurgical and postsurgical sera within one patient would facilitate identification of biomarkers since the variability of serial protein profiles within one patient is smaller than that between groups. In this study, we examined serum proteins with differential levels in postsurgery compared with those in presurgery after the removal of aneurysmal tissues in abdominal aortic aneurysm (AAA) and thoracic aortic aneurysm (TAA) patients in order to identify potential serum biomarkers for AAAs and TAAs.


Plasma proteomic changes during hypothermic and normothermic cardiopulmonary bypass in aortic surgeries.

  • Teiji Oda‎ et al.
  • International journal of molecular medicine‎
  • 2014‎

Deep hypothermic circulatory arrest (DHCA) is a protective method against brain ischemia in aortic surgery. However, the possible effects of DHCA on the plasma proteins remain to be determined. In the present study, we used novel high‑throughput technology to compare the plasma proteomes during DHCA (22˚C) with selective cerebral perfusion (SCP, n=7) to those during normothermic cardiopulmonary bypass (CPB, n=7). Three plasma samples per patient were obtained during CPB: T1, prior to cooling; T2, during hypothermia; T3, after rewarming for the DHCA group and three corresponding points for the normothermic group. A proteomic analysis was performed using isobaric tag for relative and absolute quantification (iTRAQ) labeling tandem mass spectrometry to assess quantitative protein changes. In total, the analysis identified 262 proteins. The bioinformatics analysis revealed a significant upregulation of complement activation at T2 in normothermic CPB, which was suppressed in DHCA. These findings were confirmed by the changes of the terminal complement complex (SC5b‑9) levels. At T3, however, the level of SC5b‑9 showed a greater increase in DHCA compared to normothermic CPB, while 48 proteins were significantly downregulated in DHCA. The results demonstrated that DHCA and rewarming potentially exert a significant effect on the plasma proteome in patients undergoing aortic surgery.


Comparison of survival rates in four inbred mouse strains under different housing conditions: effects of environmental enrichment.

  • Kohei Kawakami‎ et al.
  • Experimental animals‎
  • 2022‎

Housing conditions can affect the well-being of laboratory animals and thereby affect the outcomes of experiments. The appropriate environment is essential for the expression of natural behavior in animals. Here, we compared survival rates in four inbred mouse strains maintained under three different environmental conditions. Three mouse strains (C57BL/6J, C3H/HeN, and DBA/2J) housed under environmental enrichment (EE) conditions showed improved survival; however, EE did not alter the survival rate of the fourth strain, BALB/c. None of the strains showed significant differences in body weights or plasma corticosterone levels in the three environmental conditions. For BALB/c mice, the rates of debility were higher in the EE group. Interestingly, for C57BL/6J and C3H/HeN mice, the incidence of animals with alopecia was significantly lower in the EE groups than in the control group. It is possible that the enriched environment provided greater opportunities for sheltering in a secure location in which to avoid interactions with other mice. The cloth mat flooring used for the EE group was bitten and chewed by the mice. Our findings suggest that depending on the mouse strains different responses to EE are caused with regard to health and survival rates. The results of this study provide basic data for further studies on EE.


Suppression of hepatic dysfunction in tenascin‑X‑deficient mice fed a high‑fat diet.

  • Shinsaku Yamaguchi‎ et al.
  • Molecular medicine reports‎
  • 2017‎

Extracellular matrix glycoprotein tenascin‑X (TNX) is the largest member of the tenascin family. In the present study, the contribution of TNX to liver dysfunction was investigated by administration of high‑fat and high‑cholesterol diet with high levels of phosphorus and calcium (HFCD) to wild‑type (WT) and TNX‑knockout (KO) mice. After 16 weeks of HFCD administration, the ratio of liver weight to body weight was approximately 22% higher in the HFCD‑fed WT mice compared with the HFCD‑fed TNX‑KO mice, indicating hepatomegaly in HFCD‑fed WT mice. Histological analyses with hematoxylin and eosin staining at 21 weeks revealed that hepatocyte hypertrophy in HFCD‑fed TNX‑KO mice was suppressed to 85% of that in HFCD‑fed WT mice. By contrast, there was a 1.2‑fold increase in lipid deposition in hepatocytes from HFCD‑fed TNX‑KO mice compared with HFCD‑fed WT mice at 18 weeks, as demonstrated by Oil Red O staining. In addition, TNX‑KO mice at 21 weeks and 27 weeks post‑HFCD administration exhibited significant suppression of inflammatory cell infiltrate to 51 and 24% of that in WT mice, respectively. Immunofluorescence analysis for type I collagen and Elastica van Gieson staining demonstrated a clear hepatic fibrosis progression in HFCD‑fed WT mice at 27 weeks, whereas hepatic fibrosis was undetected in HFCD‑fed TNX‑KO mice. The present findings indicated that TNX deficiency suppressed hepatic dysfunction induced by HFCD administration.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: