Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 8 papers out of 8 papers

In vitro reconstitution of functional small ribosomal subunit assembly for comprehensive analysis of ribosomal elements in E. coli.

  • Masaru Shimojo‎ et al.
  • Communications biology‎
  • 2020‎

In vitro reconstitution is a powerful tool for investigating ribosome functions and biogenesis, as well as discovering new ribosomal features. In this study, we integrated all of the processes required for Escherichia coli small ribosomal subunit assembly. In our method, termed fully Recombinant-based integrated Synthesis, Assembly, and Translation (R-iSAT), assembly and evaluation of the small ribosomal subunits are coupled with ribosomal RNA (rRNA) synthesis in a reconstituted cell-free protein synthesis system. By changing the components of R-iSAT, including recombinant ribosomal protein composition, we coupled ribosomal assembly with ribosomal protein synthesis, enabling functional synthesis of ribosomal proteins and subsequent subunit assembly. In addition, we assembled and evaluated subunits with mutations in both rRNA and ribosomal proteins. The study demonstrated that our scheme provides new ways to comprehensively analyze any elements of the small ribosomal subunit, with the goal of improving our understanding of ribosomal biogenesis, function, and engineering.


Identification of a cDNA encoding a novel small secretory protein, neurosecretory protein GL, in the chicken hypothalamic infundibulum.

  • Kazuyoshi Ukena‎ et al.
  • Biochemical and biophysical research communications‎
  • 2014‎

To find novel neuropeptide and/or peptide hormone precursors in the avian brain, we performed a cDNA subtractive screen of the chicken hypothalamic infundibulum, which contains one of the feeding and neuroendocrine centers. After sequencing 596 clones, we identified a novel cDNA encoding a previously unknown protein. The deduced precursor protein consisted of 182 amino acid residues, including one putative small secretory protein of 80 amino acid residues. This small protein was flanked at the N-terminus by a signal peptide and at the C-terminus by a glycine amidation signal and a dibasic amino acid cleavage site. Because the predicted C-terminal amino acids of the small protein were Gly-Leu-NH2, the small protein was named neurosecretory protein GL (NPGL). Quantitative RT-PCR analysis demonstrated specific expression of the NPGL precursor mRNA in the hypothalamic infundibulum. Furthermore, the mRNA levels in the hypothalamic infundibulum increased during post-hatching development. In situ hybridization analysis showed that the cells containing the NPGL precursor mRNA were localized in the medial mammillary nucleus and infundibular nucleus within the hypothalamic infundibulum of 8- and 15-day-old chicks. Subcutaneous infusion of NPGL in chicks increased body weight gain without affecting food intake. To our knowledge, this is the first report to describe the identification and localization of the NPGL precursor mRNA and the function of its translated product in animals. Our findings indicate that NPGL may participate in the growth process in chicks.


In vitro reconstitution of the Escherichia coli 70S ribosome with a full set of recombinant ribosomal proteins.

  • Ryo Aoyama‎ et al.
  • Journal of biochemistry‎
  • 2022‎

Many studies of the reconstitution of the Escherichia coli small ribosomal subunit from its individual molecular parts have been reported, but contrastingly, similar studies of the large ribosomal subunit have not been well performed to date. Here, we describe protocols for preparing the 33 ribosomal proteins of the E. coli 50S subunit and demonstrate successful reconstitution of a functionally active 50S particle that can perform protein synthesis in vitro. We also successfully reconstituted both ribosomal subunits (30S and 50S) and 70S ribosomes using a full set of recombinant ribosomal proteins by integrating our developed method with the previously developed fully recombinant-based integrated synthesis, assembly and translation. The approach described here makes a major contribution to the field of ribosome engineering and could be fundamental to the future studies of ribosome assembly processes.


A large-scale targeted proteomics of plasma extracellular vesicles shows utility for prognosis prediction subtyping in colorectal cancer.

  • Keiko Kasahara‎ et al.
  • Cancer medicine‎
  • 2023‎

The pathogenesis of cancers depends on the molecular background of each individual patient. Therefore, verifying as many biomarkers as possible and clarifying their relationships with each disease status would be very valuable. We performed a large-scale targeted proteomics analysis of plasma extracellular vesicles (EVs) that may affect tumor progression and/or therapeutic resistance.


Production and characterization of neurosecretory protein GM using Escherichia coli and Chinese Hamster Ovary cells.

  • Keiko Masuda‎ et al.
  • FEBS open bio‎
  • 2015‎

Neurosecretory protein GL (NPGL) and neurosecretory protein GM (NPGM) are paralogs recently discovered in birds and in mammals. The post-translational products of NPGL and of NPGM genes include a signal peptide sequence, a glycine amidation signal, and a dibasic amino acid cleavage site. This suggests that the mature forms of NPGL and of NPGM are small proteins secreted in the hypothalamus and containing an amidated C-terminus. However, endogenous NPGL and NPGM have not yet been identified. Chicken NPGL and NPGM have two highly conserved Cys residues that are likely to form a disulfide bond, while mammalian NPGM has one additional Cys residue located between the two conserved Cys residues and the correct disulfide bond pattern is unclear. In this study, we prepared rat NPGM to elucidate the structure of its mature form. We first expressed the predicted mature NPGM, containing an extra C-terminal Gly, in Escherichia coli SHuffle cells, which are engineered to promote the formation of native disulfide bridges in recombinant proteins. We observed the presence of a disulfide bond between the N-terminal Cys residue and the second Cys residue, while the C-terminal Cys residue was free. Secondly, we transfected a construct containing the entire NPGM open reading frame into Chinese Hamster Ovary cells, and observed that NPGM was cleaved immediately after the signal peptide and that it was secreted into the medium. Furthermore, the protein presented a disulfide bond at the same location observed in recombinant NPGM.


Reconstituted cell-free protein synthesis using in vitro transcribed tRNAs.

  • Keita Hibi‎ et al.
  • Communications biology‎
  • 2020‎

Entire reconstitution of tRNAs for active protein production in a cell-free system brings flexibility into the genetic code engineering. It can also contribute to the field of cell-free synthetic biology, which aims to construct self-replicable artificial cells. Herein, we developed a system equipped only with in vitro transcribed tRNA (iVTtRNA) based on a reconstituted cell-free protein synthesis (PURE) system. The developed system, consisting of 21 iVTtRNAs without nucleotide modifications, is able to synthesize active proteins according to the redesigned genetic code. Manipulation of iVTtRNA composition in the system enabled genetic code rewriting. Introduction of modified nucleotides into specific iVTtRNAs demonstrated to be effective for both protein yield and decoding fidelity, where the production yield of DHFR reached about 40% of the reaction with native tRNA at 30°C. The developed system will prove useful for studying decoding processes, and may be employed in genetic code and protein engineering applications.


Versatile and multiplexed mass spectrometry-based absolute quantification with cell-free-synthesized internal standard peptides.

  • Keiko Masuda‎ et al.
  • Journal of proteomics‎
  • 2022‎

Preparation of stable isotope-labeled internal standard peptides is crucial for mass spectrometry (MS)-based targeted proteomics. Herein, we developed versatile and multiplexed absolute protein quantification method using MS. A previously developed method based on the cell-free peptide synthesis system, termed MS-based quantification by isotope-labeled cell-free products (MS-QBiC), was improved for multiple peptide synthesis in one-pot reaction. We pluralized the quantification tags used for the quantification of synthesized peptides and thus, made it possible to use cell-free synthesized isotope-labeled peptides as mixtures for the absolute quantification. The improved multiplexed MS-QBiC method was proved to be applied to clarify ribosomal proteins stoichiometry in the ribosomal subunit, one of the largest cellular complexes. The study demonstrates that the developed method enables the preparation of several dozens and even several hundreds of internal standard peptides within a few days for quantification of multiple proteins with only a single-run of MS analysis. SIGNIFICANCE: The developed method can be applied for the preparation of internal standard peptides without limiting the number of peptides to be synthesized, which may result in more practical screening of quantitatively reliable peptides, one of the fundamental steps in the reliable absolute quantification using MS. Furthermore, the method is highly versatile for proteome analysis of any organisms or species without any cDNA or SIL peptide libraries. The quantification can be finished in a few days including design and preparation of appropriate SIL peptides using small-scale batch cell-free reactions, which has a potential to be a part of the standard methodology in a field of quantitative proteomics.


Peripheral Injection of Chicken Growth Hormone-Releasing Hormone Inhibits Feeding Behavior in Chicks.

  • Tetsuya Tachibana‎ et al.
  • The journal of poultry science‎
  • 2016‎

Growth hormone-releasing hormone (GHRH), a stimulator of growth hormone (GH) secretion, is known to have several physiological roles such as the regulation of feeding behavior in mammals. Recently, we have reported that central injection of chicken GHRH decreased food intake in chicks, however, its peripheral role on feeding behavior has not been clarified. The purpose of the present study was to investigate the effect of peripheral injection of GHRH on feeding behavior in chicks (Gallus gallus). Intraperitoneal (IP) injection of GHRH47 (1 nmol), full length form of chicken GHRH significantly decreased food intake in chicks although the injection of GHRH27 and GHRH27-NH2, short forms of chicken GHRH had no effect. The IP injection of GHRH47 did not induced any abnormal behavior, suggesting that GHRH47-induced anorexia might not be related to abnormal behavior such as sleeping, hyperactivity and convulsion. The anorexigenic effect of GHRH47 seemed not to be related to GH because IP injection of bovine GH did not affect feeding behavior in chicks. Collectively, these results suggest that peripheral GHRH is related to inhibit feeding behavior in chicks.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: