Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 7 papers out of 7 papers

Amiloride reduces the sweet taste intensity by inhibiting the human sweet taste receptor.

  • Takamasa Imada‎ et al.
  • Biochemical and biophysical research communications‎
  • 2010‎

In mammals, sweet taste perception is mediated by the heterodimeric G-protein-coupled receptor, T1R2/T1R3. An interesting characteristic of this sweet taste receptor is that it has multiple ligand binding sites. Although there have been several studies on agonists of sweet taste receptors, little is known about antagonists of these receptors. In this study, we constructed a cell line stably expressing the human sweet taste receptor (hT1R2/hT1R3) and a functional chimeric G-protein (hG(alpha)16gust44) using the Flp-In system for measuring the antagonistic activity against the receptor. This constructed cell line responded quite intensely and frequently to the compounds applied for activation of hT1R2/hT1R3. In the presence of 3mM amiloride, the responses to sweet tastants such as sugar, artificial sweetener, and sweet protein were significantly reduced. The inhibitory activity of amiloride toward 1mM aspartame was observed in a dose-dependent manner with an IC(50) value of 0.87 mM. Our analysis of a cell line expressing hT1R3 mutants (hT1R3-A733V or hT1R3-F778A) made us to conclude that the target site of amiloride is distinct from that of lactisole, a known sweet taste inhibitor. Our results strongly indicate that amiloride reduces the sweet taste intensity by inhibiting the human sweet taste receptor and also that this receptor has multiple inhibitor binding sites.


Acetic acid activates PKD1L3-PKD2L1 channel--a candidate sour taste receptor.

  • Sho Ishii‎ et al.
  • Biochemical and biophysical research communications‎
  • 2009‎

The polycystic kidney disease (PKD) 1L3-PKD2L1 channel is a candidate sour taste receptor expressed in mammalian taste receptor cells. Various acids are reported to activate PKD channels after the removal of the acid stimuli, but little information is available on the activation of these channels by acetic acid. It was difficult to analyze the PKD channel activation by acetic acid using Ca2+ imaging experiments because this acid induces a transient and nonspecific response in cultured cells. Here, we developed a novel method to evaluate PKD channel activation by acetic acid. Nonspecific responses were observed only over a short period after the application of acetic acid. In contrast, PKD channel activation evoked by acetic acid as well as citric acid was detected even at a later time point. This method revealed that PKD1L3-PKD2L1 channel activation by acetic acid was pH-dependent and occurred when the ambient pH was <3.1.


Taste-modifying sweet protein, neoculin, is received at human T1R3 amino terminal domain.

  • Ayako Koizumi‎ et al.
  • Biochemical and biophysical research communications‎
  • 2007‎

This study examines taste reception of neoculin, a Curculigo latifolia sweet protein with taste-modifying activity which converts sourness to sweetness. Neoculin tastes sweet to humans, but not to mice, and is received by the human sweet taste receptor hT1R2-hT1R3. In the present study with calcium imaging analysis of HEK cells expressing human and mouse T1Rs, we demonstrated that hT1R3 is required for the reception of neoculin. Further experiments using human/mouse chimeric T1R3s revealed that the extracellular amino terminal domain (ATD) of hT1R3 is essential for the reception of neoculin. Although T1R2-T1R3 is known to have multiple potential ligand-binding sites to receive a wide variety of sweeteners, the present study is apparently the first to identify the ATD of hT1R3 as a new sweetener-binding region.


The human bitter taste receptor, hTAS2R16, discriminates slight differences in the configuration of disaccharides.

  • Takanobu Sakurai‎ et al.
  • Biochemical and biophysical research communications‎
  • 2010‎

Sweetness and bitterness are key determinants of food acceptance and rejection, respectively. Sugars, such as sucrose and fructose, are generally recognized as sweet. However, not all sugars are sweet, and even anomers may have quite different tastes. For example, gentiobiose is bitter, whereas its anomer, isomaltose, is sweet. Despite this unique sensory character, the molecular basis of the bitterness of gentiobiose remains to be clarified. In this study, we used calcium imaging analysis of human embryonic kidney 293T cells that heterologously expressed human taste receptors to demonstrate that gentiobiose activated hTAS2R16, a bitter taste receptor, but not hT1R2/hT1R3, a sweet taste receptor. In contrast, isomaltose activated hT1R2/hT1R3. As a result, these anomers elicit different taste sensations. Mutational analysis of hTAS2R16 also indicated that gentiobiose and β-D-glucopyranosides, such as salicin share a common binding site of hTAS2R16.


Bitter taste receptor activation by hop-derived bitter components induces gastrointestinal hormone production in enteroendocrine cells.

  • Takahiro Yamazaki‎ et al.
  • Biochemical and biophysical research communications‎
  • 2020‎

Matured hop bitter acids (MHBA) are bitter acid oxides derived from hops, widely consumed as food ingredients to add bitterness and flavor in beers. Previous studies have suggested a potential gut-brain mechanism in which MHBA simulates enteroendocrine cells to produce cholecystokinin (CCK), a gastrointestinal hormone which activates autonomic nerves, resulting in body fat reduction and cognitive improvement; however, the MHBA recognition site on enteroendocrine cells has not been fully elucidated. In this study, we report that MHBA is recognized by specific human and mouse bitter taste receptors (human TAS2R1, 8, 10 and mouse Tas2r119, 130, 105) using a heterologous receptor expression system in human embryonic kidney 293T cells. In addition, knockdown of each of these receptors using siRNA transfection partially but significantly suppressed an MHBA-induced calcium response and CCK production in enteroendocrine cells. Furthermore, blocking one of the essential taste signaling components, transient receptor potential cation channel subfamily M member 5, remarkably inhibited the MHBA-induced calcium response and CCK production in enteroendocrine cells. Our results demonstrate that specific bitter taste receptor activation by MHBA drives downstream calcium response and CCK production in enteroendocrine cells. These findings reveal a mechanism by which food ingredients derived from hops in beer activate the gut-brain axis for the first time.


Evaluation of the bitterness of green tea catechins by a cell-based assay with the human bitter taste receptor hTAS2R39.

  • Masataka Narukawa‎ et al.
  • Biochemical and biophysical research communications‎
  • 2011‎

Catechins have a broad range of physiological functions and act as the main taste ingredient of green tea. Although catechins show a strong bitterness, the bitter taste receptor for catechins has not been fully understood. The objective of this study was to identify the receptor for the major green tea catechins such as (-)-epicatechin (EC), (-)-epicatechin gallate (ECg), (-)-epigallocatechin (EGC), and (-)-epigallocatechin gallate (EGCg). By the cell-based assay using cultured cells expressing human bitter taste receptor, a clear response of hTAS2R39-expressing cells was observed to 300μM of either ECg or EGCg, which elicit a strong bitterness in humans. The response of hTAS2R39-expressing cells to ECg was the strongest among the tested catechins, followed by EGCg. Because the cellular response to EC and EGC is much weaker than those of ECg and EGCg, galloyl groups was strongly supposed to be involved in the bitter intensity. This finding is similar to the observations of taste intensity obtained from a human sensory study. Our results suggest the participation of hTAS2R39 in the detection of catechins in humans, indicating the possibility that bitterness of tea catechins can be evaluated by using cells expressing hTAS2R39.


Ibuprofen inhibits oral NaCl response through transmembrane channel-like 4.

  • Yoichi Kasahara‎ et al.
  • Biochemical and biophysical research communications‎
  • 2021‎

Nonsteroidal anti-inflammatory drugs, such as ibuprofen, are known to modify salty taste perception in humans. However, the underlying molecular mechanisms remain unknown. We investigated the inhibitory effect of ibuprofen on the NaCl stimulation of epithelium sodium channel (ENaC) and transmembrane channel-like 4 (TMC4), which are involved in salty taste detection. Although ibuprofen only minimally inhibited the response of the ENaC to NaCl, it significantly inhibited the TMC4 response to NaCl with an IC50 at 1.45 mM. These results suggest that ibuprofen interferes with detection of salty taste via inhibition of TMC4.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: