Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 2 papers out of 2 papers

Comparative analysis of monoaminergic cerebrospinal fluid-contacting cells in Osteichthyes (bony vertebrates).

  • Anna L Xavier‎ et al.
  • The Journal of comparative neurology‎
  • 2017‎

Cerebrospinal fluid-contacting (CSF-c) cells containing monoamines such as dopamine (DA) and serotonin (5-HT) occur in the periventricular zones of the hypothalamic region of most vertebrates except for placental mammals. Here we compare the organization of the CSF-c cells in chicken, Xenopus, and zebrafish, by analyzing the expression of synthetic enzymes of DA and 5-HT, respectively, tyrosine hydroxylase (TH) and tryptophan hydroxylase (TPH), and draw an evolutionary scenario for this cell population. Due to the lack of TH immunoreactivity in this region, the hypothalamic CSF-c cells have been thought to take up DA from the ventricle instead of synthesizing it. We demonstrate that a second TH gene (TH2) is expressed in the CSF-c cells of all the three species, suggesting that these cells do indeed synthetize DA. Furthermore, we found that many CSF-c cells coexpress TH2 and TPH1 and contain both DA and 5-HT, a dual neurotransmitter phenotype hitherto undescribed in the brain of any vertebrate. The similarities of CSF-c cells in chicken, Xenopus, and zebrafish suggest that these characteristics are inherited from the common ancestor of the Osteichthyes. A significant difference between tetrapods and teleosts is that teleosts possess an additional CSF-c cell population around the posterior recess (PR) that has emerged in specific groups of Actinopterygii. Our comparative analysis reveals that the hypothalamus in mammals and teleosts has evolved in a divergent manner: placental mammals have lost the monoaminergic CSF-c cells, while teleosts have increased their relative number.


Differential expression of dopaminergic cell markers in the adult zebrafish forebrain.

  • Kei Yamamoto‎ et al.
  • The Journal of comparative neurology‎
  • 2011‎

Although the simultaneous presence of tyrosine hydroxylase (TH), aromatic amino acid decarboxylase (AADC), dopamine transporter (DAT), and vesicular monoamine transporter 2 (VMAT2) is considered as a phenotypic signature of dopamine (DA) neurons, it has been suggested that they are not uniformly expressed in all dopaminergic brain nuclei. Moreover, in nonmammalian vertebrates, two tyrosine hydroxylase genes (TH1 and TH2) are found, and they exhibit different expression patterns in zebrafish brains. Here we present a detailed description of the distribution of TH1, TH2, AADC, DAT, and VMAT2 transcripts, in relation to TH and DA immunoreactivity to better characterize dopaminergic nuclei in the adult zebrafish forebrain. TH2-positive cells in the hypothalamus are strongly DA immunoreactive (DAir), providing direct evidence that they are dopaminergic. DAir cells are also found in most TH1-positive or TH-immunoreactive (THir) nuclei. However, the DAir signal was weaker than THir in the olfactory bulb, telencephalon, ventral thalamus, pretectum, and some posterior tubercular and preoptic nuclei. These cell populations also exhibited low levels of VMAT2 transcripts, suggesting that low DA is due to a lower vesicular DA accumulation. In contrast, cell populations with low levels of AADC did not always have low levels of DA. DAT transcripts were abundantly expressed in most of the TH1- or TH2-positive territories. In addition, DAT and/or VMAT2 transcripts were found in some periventricular cell populations such as in the telencephalon without TH1 or TH2 expression. Thus, expression patterns of dopaminergic cell markers are not homogeneous, suggesting that the gene regulatory logic determining the dopaminergic phenotype is unexpectedly complex.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: