Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 20 papers out of 35 papers

Reduced flexibility associated with metabolic syndrome in community-dwelling elders.

  • Ke-Vin Chang‎ et al.
  • PloS one‎
  • 2015‎

The ageing process may lead to reductions in physical fitness, a known risk factor in the development of metabolic syndrome. The purpose of the current study was to evaluate cross-sectional and combined associations of metabolic syndrome with body composition and physical fitness in a community based geriatric population.


Ethanol Extracts of Fresh Davallia formosana (WL1101) Inhibit Osteoclast Differentiation by Suppressing RANKL-Induced Nuclear Factor- κ B Activation.

  • Tzu-Hung Lin‎ et al.
  • Evidence-based complementary and alternative medicine : eCAM‎
  • 2013‎

The rhizome of Davallia formosana is commonly used to treat bone disease including bone fracture, arthritis, and osteoporosis in Chinese herbal medicine. Here, we report the effects of WL1101, the ethanol extracts of fresh rhizomes of Davallia formosana on ovariectomy-induced osteoporosis. In addition, excess activated bone-resorbing osteoclasts play crucial roles in inflammation-induced bone loss diseases, including rheumatoid arthritis and osteoporosis. In this study, we examined the effects of WL1101 on receptor activator of nuclear factor- κ B ligand (RANKL)-induced osteoclastogenesis. Treatment with WL1101 significantly inhibited RANKL-stimulated osteoclastogenesis. Two isolated active compounds, ((-)-epicatechin) or WL14 (4-hydroxy-3-aminobenzoic acid) could also inhibit RANKL-induced osteoclastogenesis. WL1101 suppressed the RANKL-induced nuclear factor- κ B (NF- κ B) activation and nuclear translocation, which is the key process during osteoclastogenesis, by inhibiting the activation of I κ B kinase (IKK) and I κ B α . In animal model, oral administration of WL1101 (50 or 200 mg/kg/day) effectively decreased the excess bone resorption and significantly antagonized the trabecular bone loss in ovariectomized rats. Our results demonstrate that the ethanol extracts of fresh rhizomes of Davallia formosana inhibit osteoclast differentiation via the inhibition of NF- κ B activation and effectively ameliorate ovariectomy-induced osteoporosis. WL1101 may thus have therapeutic potential for the treatment of diseases associated with excessive osteoclastic activity.


Antidiabetic effects of pterosin A, a small-molecular-weight natural product, on diabetic mouse models.

  • Feng-Lin Hsu‎ et al.
  • Diabetes‎
  • 2013‎

The therapeutic effect of pterosin A, a small-molecular-weight natural product, on diabetes was investigated. Pterosin A, administered orally for 4 weeks, effectively improved hyperglycemia and glucose intolerance in streptozotocin, high-fat diet-fed, and db/db diabetic mice. There were no adverse effects in normal or diabetic mice treated with pterosin A for 4 weeks. Pterosin A significantly reversed the increased serum insulin and insulin resistance (IR) in dexamethasone-IR mice and in db/db mice. Pterosin A significantly reversed the reduced muscle GLUT-4 translocation and the increased liver phosphoenolpyruvate carboxyl kinase (PEPCK) expression in diabetic mice. Pterosin A also significantly reversed the decreased phosphorylations of AMP-activated protein kinase (AMPK) and Akt in muscles of diabetic mice. The decreased AMPK phosphorylation and increased p38 phosphorylation in livers of db/db mice were effectively reversed by pterosin A. Pterosin A enhanced glucose uptake and AMPK phosphorylation in cultured human muscle cells. In cultured liver cells, pterosin A inhibited inducer-enhanced PEPCK expression, triggered the phosphorylations of AMPK, acetyl CoA carboxylase, and glycogen synthase kinase-3, decreased glycogen synthase phosphorylation, and increased the intracellular glycogen level. These findings indicate that pterosin A may be a potential therapeutic option for diabetes.


Effects of arsenic on osteoblast differentiation in vitro and on bone mineral density and microstructure in rats.

  • Cheng-Tien Wu‎ et al.
  • Environmental health perspectives‎
  • 2014‎

Arsenic is a ubiquitous toxic element and is known to contaminate drinking water in many countries. Several epidemiological studies have shown that arsenic exposure augments the risk of bone disorders. However, the detailed effect and mechanism of inorganic arsenic on osteoblast differentiation of bone marrow stromal cells and bone loss still remain unclear.


Low-Concentration Arsenic Trioxide Inhibits Skeletal Myoblast Cell Proliferation via a Reactive Oxygen Species-Independent Pathway.

  • Shing Hwa Liu‎ et al.
  • PloS one‎
  • 2015‎

Myoblast proliferation and differentiation are essential for skeletal muscle regeneration. Myoblast proliferation is a critical step in the growth and maintenance of skeletal muscle. The precise action of inorganic arsenic on myoblast growth has not been investigated. Here, we investigated the in vitro effect of inorganic arsenic trioxide (As2O3) on the growth of C2C12 myoblasts. As2O3 decreased myoblast growth at submicromolar concentrations (0.25-1 μM) after 72 h of treatment. Submicromolar concentrations of As2O3 did not induce the myoblast apoptosis. Low-concentration As2O3 (0.5 and 1 μM) significantly suppressed the myoblast cell proliferative activity, which was accompanied by a small proportion of bromodeoxyuridine (BrdU) incorporation and decreased proliferating cell nuclear antigen (PCNA) protein expression. As2O3 (0.5 and 1 μM) increased the intracellular arsenic content but did not affect the reactive oxygen species (ROS) levels in the myoblasts. Cell cycle analysis indicated that low-concentrations of As2O3 inhibited cell proliferation via cell cycle arrest in the G1 and G2/M phases. As2O3 also decreased the protein expressions of cyclin D1, cyclin E, cyclin B1, cyclin-dependent kinase (CDK) 2, and CDK4, but did not affect the protein expressions of p21 and p27. Furthermore, As2O3 inhibited the phosphorylation of Akt. Insulin-like growth factor-1 significantly reversed the inhibitory effect of As2O3 on Akt phosphorylation and cell proliferation in the myoblasts. These results suggest that submicromolar concentrations of As2O3 alter cell cycle progression and reduce myoblast proliferation, at least in part, through a ROS-independent Akt inhibition pathway.


Adverse effects of acrolein, a ubiquitous environmental toxicant, on muscle regeneration and mass.

  • Huang-Jen Chen‎ et al.
  • Journal of cachexia, sarcopenia and muscle‎
  • 2019‎

Acrolein is an extremely electrophilic aldehyde. Increased urinary acrolein adducts have been found in type 2 diabetic patients and people with a smoking habit. The increased blood acrolein was shown in patients who received the cancer drug cyclophosphamide. Both diabetes and smoking are risk factors for skeletal muscle wasting or atrophy. Acrolein has been found to induce myotube atrophy in vitro. The in vitro and in vivo effects and mechanisms of acrolein on myogenesis and the in vivo effect of acrolein on muscle wasting still remain unclear.


Curcuminoid submicron particle ameliorates cognitive deficits and decreases amyloid pathology in Alzheimer's disease mouse model.

  • Yi-Heng Tai‎ et al.
  • Oncotarget‎
  • 2018‎

Alzheimer's disease (AD) is the most prevalent neurodegenerative disorder and is triggered via abnormal accumulation of amyloid-β peptide (Aβ). Aggregated Aβ is responsible for disrupting calcium homeostasis, inducing neuroinflammation, and promoting neurodegeneration. In this study, we generated curcuminoid submicron particle (CSP), which reduce the average size to ~60 nm in diameter. CSP had elevated the bioavailability in vivo and better neuroprotective effect against oligomeric Aβ than un-nanosized curcuminoids in vitro. Two months of CSP consumption reversed spatial memory deficits and the loss of a calcium binding protein calbindin-D28k in the hippocampus of AD mouse model. In addition, CSP consumption lowered amyloid plaques and astrogliosis in vivo and enhanced microglial Aβ phagocytosis in vitro, implying that the beneficial effects of CSP also mediated via modulating neuroinflammation and enhancing amyloid clearance. Taken together, our study demonstrated the protective effects of CSP toward ameliorating the memory impairment and pathological deficits in AD mouse model.


Amelioration of amyloid-β-induced deficits by DcR3 in an Alzheimer's disease model.

  • Yi-Ling Liu‎ et al.
  • Molecular neurodegeneration‎
  • 2017‎

Microglia mediate amyloid-beta peptide (Aβ)-induced neuroinflammation, which is one of the key events in the pathogenesis of Alzheimer's disease (AD). Decoy receptor 3 (DcR3)/TNFRSF6B is a pleiotropic immunomodulator that promotes macrophage differentiation toward the M2 anti-inflammatory phenotype. Based on its role as an immunosupressor, we examined whether DcR3 could alleviate neuroinflammation and AD-like deficits in the central nervous system.


A Multi-Institutional Randomized Controlled Trial to Investigate Whether Zoledronate Prevents Bone Loss After Discontinuation of Denosumab: The Study Protocol of Denosumab Sequential Therapy (DST) Trial.

  • Chia-Che Lee‎ et al.
  • Frontiers in medicine‎
  • 2021‎

Background: Though denosumab is an effective treatment for osteoporosis, the rebound effect after discontinuation has drawn investigators' attention. It includes a dramatic loss of gained bone mineral density (BMD) and an increased risk of vertebral fractures. This prospective multi-institutional randomized controlled trial aims to investigate whether zoledronate prevents loss of BMD after discontinuation of denosumab. The trial was registered as Denosumab Sequential Therapy (DST) trial in March 2019 at clinicaltrials.gov, with the identifier NCT03868033. Methods: The study is conducted at National Taiwan University Hospital and its branches. Patients who have continuously received denosumab treatment for two or more years are surveyed for eligibility. Baseline characteristics and questionnaires of life quality are recorded after recruitment. BMD, circulating levels of bone turnover markers (BTMs), including serum N-terminal propeptide of type 1 collagen (P1NP) and C-terminal telopeptide (CTX), are checked before the stratified randomization to 4 groups. Biological sex and the T-scores are used to create 4 strata. The participants in group 1 adhere to regular denosumab therapy for another 2 years. All the other patients receive on-time zoledronate treatment in the first year. The participants in group 2, 3, and 4 have on-time denosumab, on-time zoledronate and drug holiday in the second year, respectively. BMDs are checked annually. Pre-scheduled checkpoints of BTMs are also arranged. For patient safety, rescue treatment with another injection of zoledronate will be applied to the patients on drug holiday if the CTX levels raise above the pre-specified threshold, 0.573 ng/mL for women and 0.584 ng/mL for men. The primary outcomes are the percentage changes of BMDs in lumbar spine, total hip and femoral neck. The secondary outcomes include the changes of serum level of the BTMs, new osteoporotic fractures, extra zoledronate injections needed in group 4 and the differences of quality of life. Discussion: We aim to provide evidence whether zoledronate prevents bone loss after denosumab cessation. To our knowledge, the study has the largest sample size. No other randomized controlled study included all the three different treatment strategies and a positive control. It is also the first associated randomized controlled trial outside Europe.


Comparison of eight modern preoperative scoring systems for survival prediction in patients with extremity metastasis.

  • Tse-Ying Lee‎ et al.
  • Cancer medicine‎
  • 2023‎

Survival is an important factor to consider when clinicians make treatment decisions for patients with skeletal metastasis. Several preoperative scoring systems (PSSs) have been developed to aid in survival prediction. Although we previously validated the Skeletal Oncology Research Group Machine-learning Algorithm (SORG-MLA) in Taiwanese patients of Han Chinese descent, the performance of other existing PSSs remains largely unknown outside their respective development cohorts. We aim to determine which PSS performs best in this unique population and provide a direct comparison between these models.


Nε-(1-Carboxymethyl)-L-lysine/RAGE Signaling Drives Metastasis and Cancer Stemness through ERK/NFκB axis in Osteosarcoma.

  • Ting-Yu Chang‎ et al.
  • International journal of biological sciences‎
  • 2024‎

Osteosarcoma is an extremely aggressive bone cancer with poor prognosis. Nε-(1-Carboxymethyl)-L-lysine (CML), an advanced glycation end product (AGE), can link to cancer progression, tumorigenesis and metastasis, although the underlying mechanism remains unclear. The role of CML in osteosarcoma progression is still unclear. We hypothesized that CML could promote migration, invasion, and stemness in osteosarcoma cells. CML and its receptor (RAGE; receptor for AGE) were higher expressed at advanced stages in human osteosarcoma tissues. In mouse models, which streptozotocin was administered to induce CML accumulation in the body, the subcutaneous tumor growth was not affected, but the tumor metastasis using tail vein injection model was enhanced. In cell models (MG63 and U2OS cells), CML enhanced tumor sphere formation and acquisition of cancer stem cell characteristics, induced migration and invasion abilities, as well as triggered the epithelial-mesenchymal transition process, which were associated with RAGE expression and activation of downstream signaling pathways, especially the ERK/NFκB pathway. RAGE inhibition elicited CML-induced cell migration, invasion, and stemness through RAGE-mediated ERK/NFκB pathway. These results revealed a crucial role for CML in driving stemness and metastasis in osteosarcoma. These findings uncover a potential CML/RAGE connection and mechanism to osteosarcoma progression and set the stage for further investigation.


The pathological role of advanced glycation end products-downregulated heat shock protein 60 in islet β-cell hypertrophy and dysfunction.

  • Siao-Syun Guan‎ et al.
  • Oncotarget‎
  • 2016‎

Heat shock protein 60 (HSP60) is a mitochondrial chaperone. Advanced glycation end products (AGEs) have been shown to interfere with the β-cell function. We hypothesized that AGEs induced β-cell hypertrophy and dysfunction through a HSP60 dysregulation pathway during the stage of islet/β-cell hypertrophy of type-2-diabetes. We investigated the role of HSP60 in AGEs-induced β-cell hypertrophy and dysfunction using the models of diabetic mice and cultured β-cells. Hypertrophy, increased levels of p27Kip1, AGEs, and receptor for AGEs (RAGE), and decreased levels of HSP60, insulin, and ATP content were obviously observed in pancreatic islets of 12-week-old db/db diabetic mice. Low-concentration AGEs significantly induced the cell hypertrophy, increased the p27Kip1 expression, and decreased the HSP60 expression, insulin secretion, and ATP content in cultured β-cells, which could be reversed by RAGE neutralizing antibody. HSP60 overexpression significantly reversed AGEs-induced hypertrophy, dysfunction, and ATP reduction in β-cells. Oxidative stress was also involved in the AGEs-decreased HSP60 expression in β-cells. Pancreatic sections from diabetic patient showed islet hypertrophy, increased AGEs level, and decreased HSP60 level as compared with normal subject. These findings highlight a novel mechanism by which a HSP60-correlated signaling pathway contributes to the AGEs-RAGE axis-induced β-cell hypertrophy and dysfunction under diabetic hyperglycemia.


Inhibition of osteoporosis by the αvβ3 integrin antagonist of rhodostomin variants.

  • Tzu-Hung Lin‎ et al.
  • European journal of pharmacology‎
  • 2017‎

Integrins are heterodimeric cell surface receptors that mediate cell-cell and cell-matrix interaction. The vitronectin and osteopontin receptor αvβ3 integrin has increased expression levels and is implicated in the adhesion, activation, and migration of osteoclasts on the bone surface as well as osteoclast polarization. αvβ3 integrin plays an important role in osteoclast differentiation and resorption. In addition, Arg-Gly-Asp (RGD)-containing peptides, small molecular inhibitors, and antibodies to αvβ3 integrin have been shown to inhibit bone resorption in vitro and in vivo. Here we examined the effects of a disintegrin HSA-ARLDDL a genetically modified mutant of rhodostomin conjugated with human serum albumin, which is highly selective of αvβ3, on RANKL-induced osteoclastogenesis and ovariectomy (OVX)-induced osteoporosis. In RANKL-induced osteoclastogenesis, HSA-ARLDDL significantly inhibited osteoclast formation, and IC50 was at nM range. Post-treatment HSA-ARLDDL also inhibits osteoclast formation. Furthermore, weekly administration of HSA-ARLDDL significantly inhibits the increase in serum bone resorption marker levels and decrease in cancellous bone loss in tibia and femur induced by OVX. On the other hand, HSA-ARLDDL did not affect the differentiation and calcium deposition of osteoblasts. These results indicate that the highly selective and long-acting αvβ3 integrin antagonists could be developed as effective drugs for postmenopausal osteoporosis.


Induction of sirtuin-1 signaling by resveratrol induces human chondrosarcoma cell apoptosis and exhibits antitumor activity.

  • Sung-Chuan Chao‎ et al.
  • Scientific reports‎
  • 2017‎

Chondrosarcoma is a malignant primary bone tumor. Sirtuin-1 (SIRT1), which is a member of sirtuin family, plays a dual role either in cancer promotion or suppression. There is no report about the role of SIRT1 in the human chondrosarcoma cells. Resveratrol is a potent activator of SIRT1. However, its effects on chondrosarcoma have not been extensively studied. Here, we investigated the role of SIRT1 induction by resveratrol in human chondrosarcoma cell growth and tumor progression. Resveratrol significantly decreased cell viability and induced cell apoptosis in human chondrosarcoma cells in a dose-dependent manner. The protein expression and activity of SIRT1 were activated after treatment with resveratrol. Resveratrol significantly inhibited NF-κB signaling by deacetylating the p65 subunit of NF-κB complex, which could be reversed by siRNA-SIRT1 transfection or deacetylation inhibitor MS-275. Resveratrol induced-apoptosis involved a caspase-3-mediated mechanism. Both siRNA-SIRT1 transfection and MS-275 significantly inhibited the resveratrol-induced caspase-3 cleavage and activity in human chondrosarcoma cells. Moreover, in vivo chondrosarcoma xenograft study revealed a dramatic reduction in tumor volume and the increased SIRT1 and cleaved caspase-3 expressions in tumors by resveratrol treatment. These results suggest that resveratrol induces chondrosarcoma cell apoptosis via a SIRT1-activated NF-κB deacetylation and exhibits anti-chondrosarcoma activity in vivo.


Preventing muscle wasting by osteoporosis drug alendronate in vitro and in myopathy models via sirtuin-3 down-regulation.

  • Hsien-Chun Chiu‎ et al.
  • Journal of cachexia, sarcopenia and muscle‎
  • 2018‎

A global consensus on the loss of skeletal muscle mass and function in humans refers as sarcopenia and cachexia including diabetes, obesity, renal failure, and osteoporosis. Despite a current improvement of sarcopenia or cachexia with exercise training and supportive therapies, alternative and specific managements are needed to discover for whom are unable or unwilling to embark on these treatments. Alendronate is a widely used drug for osteoporosis in the elderly and postmenopausal women. Osteopenic menopausal women with 6 months of alendronate therapy have been observed to improve not only lumbar bone mineral density but also handgrip strength. However, the effect and mechanism of alendronate on muscle strength still remain unclear. Here, we investigated the therapeutic potential and the molecular mechanism of alendronate on the loss of muscle mass and strength in vitro and in vivo.


Thrombin-induced IL-6 production in human synovial fibroblasts is mediated by PAR1, phospholipase C, protein kinase C alpha, c-Src, NF-kappa B and p300 pathway.

  • Yung-Cheng Chiu‎ et al.
  • Molecular immunology‎
  • 2008‎

Thrombin is a key factor in the stimulation of fibrin deposition, angiogenesis and proinflammatory processes. Abnormalities in these processes are primary features of rheumatoid arthritis (RA) in synovial tissues. We investigated the signaling pathway involved in IL-6 production caused by thrombin in synovial fibroblasts. Thrombin caused concentration- and time-dependent increases in IL-6 production. By using pharmacological inhibitors or activators or genetic inhibition by the protease activated receptor (PAR), siRNA revealed that the PAR1 receptor but not other PAR receptors is involved in thrombin-mediated up-regulation of IL-6. Thrombin-mediated IL-6 production was attenuated by thrombin inhibitor (PPACK), phospholipase C inhibitor (U73122), protein kinase C alpha inhibitor (Ro320432), Src inhibitor (PP2), NF-kappaB inhibitor (PDTC), I kappa B protease inhibitor (TPCK), or NF-kappaB inhibitor peptide. Stimulation of synovial fibroblasts with thrombin activated I kappa B kinase alpha/beta (IKK alpha/beta), I kappa B alpha phosphorylation, I kappa B alpha degradation, p65 phosphorylation at Ser(276), p65 and p50 translocation from the cytosol to the nucleus, and kappaB-luciferase activity. Thrombin-mediated an increase of IKK alpha/beta activity, kappaB-luciferase activity and p65 and p50 binding to the NF-kappaB element was inhibited by PPACK, U73122, Ro320432 and PP2. The binding of p65 and p50 to the NF-kappaB elements, as well as the recruitment of p300 and the enhancement of p50 acetylation on the IL-6 promoter was enhanced by thrombin. Our results suggest that thrombin increased IL-6 production in synovial fibroblasts via the PAR1 receptor/PI-PLC/PKC alpha/c-Src/NF-kappaB and p300 signaling pathway.


Pharmacologic intervention for prevention of fractures in osteopenic and osteoporotic postmenopausal women: Systemic review and meta-analysis.

  • Chih-Hsing Wu‎ et al.
  • Bone reports‎
  • 2020‎

Emerging evidence has indicated a role for pharmacologic agents in the primary prevention of osteoporotic fracture, but have not yet been systematically reviewed for meta-analysis. We conducted a meta-analysis to evaluate the efficacy of pharmacologic interventions in reducing fracture risk and increasing bone mineral density (BMD) in postmenopausal women with osteopenia or osteoporosis but without prevalent fragility fracture.


Arsenic inhibits myogenic differentiation and muscle regeneration.

  • Yuan-Peng Yen‎ et al.
  • Environmental health perspectives‎
  • 2010‎

The incidence of low birth weights is increased in offspring of women who are exposed to high concentrations of arsenic in drinking water compared with other women. We hypothesized that effects of arsenic on birth weight may be related to effects on myogenic differentiation.


Ovarian cancer-related hypophosphatemic osteomalacia--a case report.

  • Hung-An Lin‎ et al.
  • The Journal of clinical endocrinology and metabolism‎
  • 2014‎

Tumor-induced osteomalacia (TIO) is a rare paraneoplastic syndrome caused primarily by benign mesenchymal tumors. It has been associated with malignancies in rare cases. High serum levels of fibroblast growth factor (FGF) 23 reported in a group of patients with ovarian cancer had normal serum phosphate levels. There had been no ovarian cancer-related hypophosphatemic osteomalacia in a search of the literature.


Fracture liaison services improve outcomes of patients with osteoporosis-related fractures: A systematic literature review and meta-analysis.

  • Chih-Hsing Wu‎ et al.
  • Bone‎
  • 2018‎

This systematic review and meta-analysis evaluated the outcomes of patients with osteoporosis-related fractures managed through fracture liaison services (FLS) programs.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: