Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 4 papers out of 4 papers

Dispersed sites of HIV Vif-dependent polyubiquitination in the DNA deaminase APOBEC3F.

  • John S Albin‎ et al.
  • Journal of molecular biology‎
  • 2013‎

APOBEC3F (A3F) and APOBEC3G (A3G) are DNA cytosine deaminases that potently restrict human immunodeficiency virus type 1 replication when the virus is deprived of its accessory protein Vif (virion infectivity factor). Vif counteracts these restriction factors by recruiting A3F and A3G to an E3 ubiquitin (Ub) ligase complex that mediates their polyubiquitination (polyUb) and proteasomal degradation. While previous efforts have identified single amino acid residues in APOBEC3 proteins required for Vif recognition, less is known about the downstream Ub acceptor sites that are targeted. One prior report identified a cluster of polyubiquitinated residues in A3G and proposed an antiparallel model of A3G interaction with the Vif-E3 Ub ligase complex wherein Vif binding at one terminus of A3G orients the opposite terminus for polyUb [Iwatani et al. (2009). Proc. Natl. Acad. Sci. USA, 106, 19539-19544]. To test the generalizability of this model, we carried out a complete mutagenesis of the lysine residues in A3F and used a complementary, unbiased proteomic approach to identify Ub acceptor sites targeted by Vif. Our data indicate that internal lysines are the dominant Ub acceptor sites in both A3F and A3G. In contrast with the proposed antiparallel model, however, we find that the Vif-dependent polyUb of A3F and A3G can occur at multiple acceptor sites dispersed along predicted lysine-enriched surfaces of both the N- and C-terminal deaminase domains. These data suggest an alternative model for binding of APOBEC3 proteins to the Vif-E3 Ub ligase complex and diminish enthusiasm for the amenability of APOBEC3 Ub acceptor sites to therapeutic intervention.


APOBEC3B and AID have similar nuclear import mechanisms.

  • Lela Lackey‎ et al.
  • Journal of molecular biology‎
  • 2012‎

Members of the APOBEC (apolipoprotein B mRNA editing enzyme, catalytic polypeptide-like) protein family catalyze DNA cytosine deamination and underpin a variety of immune defenses. For instance, several family members, including APOBEC3B (A3B), elicit strong retrotransposon and retrovirus restriction activities. However, unlike the other proteins, A3B is the only family member with steady-state nuclear localization. Here, we show that A3B nuclear import is an active process requiring at least one amino acid (Val54) within an N-terminal motif analogous to the nuclear localization determinant of the antibody gene diversification enzyme AID (activation-induced cytosine deaminase). Mechanistic conservation with AID is further suggested by A3B's capacity to interact with the same subset of importin proteins. Despite these mechanistic similarities, enforced A3B expression cannot substitute for AID-dependent antibody gene diversification by class switch recombination. Regulatory differences between A3B and AID are also visible during cell cycle progression. Our studies suggest that the present-day A3B enzyme retained the nuclear import mechanism of an ancestral AID protein during the expansion of the APOBEC3 locus in primates. Our studies also highlight the likelihood that, after nuclear import, specialized mechanisms exist to guide these enzymes to their respective physiological substrates and prevent gratuitous chromosomal DNA damage.


The Role of RNA in HIV-1 Vif-Mediated Degradation of APOBEC3H.

  • Jiayi Wang‎ et al.
  • Journal of molecular biology‎
  • 2019‎

As many as five members of the APOBEC3 family of DNA cytosine deaminases are capable of inhibiting HIV-1 replication by deaminating viral cDNA cytosines and interfering with reverse transcription. HIV-1 counteracts restriction with the virally encoded Vif protein, which forms a hybrid ubiquitin ligase complex that directly binds APOBEC3 enzymes and targets them for proteasomal degradation. APOBEC3H (A3H) is unique among family members by dimerization through cellular and viral duplex RNA species. RNA binding is required for localization of A3H to the cytoplasmic compartment, for efficient packaging into nascent HIV-1 particles and ultimately for effective virus restriction activity. Here we compared wild-type human A3H and RNA binding-defective mutants to ask whether RNA may be a factor in the functional interaction with HIV-1 Vif. We used structural modeling, immunoblotting, live cell imaging, and split green fluorescence protein (GFP) reconstitution approaches to assess the capability of HIV-1 Vif to promote the degradation of wild-type A3H in comparison to RNA binding-defective mutants. The results combined to show that RNA is not strictly required for Vif-mediated degradation of A3H, and that RNA and Vif are likely to bind this single-domain DNA cytosine deaminase on physically distinct surfaces. However, a subset of the results also indicated that the A3H degradation process may be affected by A3H protein structure, subcellular localization, and differences in the constellation of A3H interaction partners, suggesting additional factors may also influence the fate and functionality of this host-pathogen interaction.


1.92 Angstrom Zinc-Free APOBEC3F Catalytic Domain Crystal Structure.

  • Nadine M Shaban‎ et al.
  • Journal of molecular biology‎
  • 2016‎

The APOBEC3 family of DNA cytosine deaminases is capable of restricting the replication of HIV-1 and other pathogens. Here, we report a 1.92 Å resolution crystal structure of the Vif-binding and catalytic domain of APOBEC3F (A3F). This structure is distinct from the previously published APOBEC and phylogenetically related deaminase structures, as it is the first without zinc in the active site. We determined an additional structure containing zinc in the same crystal form that allows direct comparison with the zinc-free structure. In the absence of zinc, the conserved active site residues that normally participate in zinc coordination show unique conformations, including a 90 degree rotation of His249 and disulfide bond formation between Cys280 and Cys283. We found that zinc coordination is influenced by pH, and treating the protein at low pH in crystallization buffer is sufficient to remove zinc. Zinc coordination and catalytic activity are reconstituted with the addition of zinc only in a reduced environment likely due to the two active site cysteines readily forming a disulfide bond when not coordinating zinc. We show that the enzyme is active in the presence of zinc and cobalt but not with other divalent metals. These results unexpectedly demonstrate that zinc is not required for the structural integrity of A3F and suggest that metal coordination may be a strategy for regulating the activity of A3F and related deaminases.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: