Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 3 papers out of 3 papers

Clinical Evaluation of Self-Collected Saliva by Quantitative Reverse Transcription-PCR (RT-qPCR), Direct RT-qPCR, Reverse Transcription-Loop-Mediated Isothermal Amplification, and a Rapid Antigen Test To Diagnose COVID-19.

  • Mayu Nagura-Ikeda‎ et al.
  • Journal of clinical microbiology‎
  • 2020‎

The clinical performances of six molecular diagnostic tests and a rapid antigen test for severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) were clinically evaluated for the diagnosis of coronavirus disease 2019 (COVID-19) in self-collected saliva. Saliva samples from 103 patients with laboratory-confirmed COVID-19 (15 asymptomatic and 88 symptomatic) were collected on the day of hospital admission. SARS-CoV-2 RNA in saliva was detected using a quantitative reverse transcription-PCR (RT-qPCR) laboratory-developed test (LDT), a cobas SARS-CoV-2 high-throughput system, three direct RT-qPCR kits, and reverse transcription-loop-mediated isothermal amplification (RT-LAMP). The viral antigen was detected by a rapid antigen immunochromatographic assay. Of the 103 samples, viral RNA was detected in 50.5 to 81.6% of the specimens by molecular diagnostic tests, and an antigen was detected in 11.7% of the specimens by the rapid antigen test. Viral RNA was detected at significantly higher percentages (65.6 to 93.4%) in specimens collected within 9 days of symptom onset than in specimens collected after at least 10 days of symptoms (22.2 to 66.7%) and in specimens collected from asymptomatic patients (40.0 to 66.7%). Self-collected saliva is an alternative specimen option for diagnosing COVID-19. The RT-qPCR LDT, a cobas SARS-CoV-2 high-throughput system, direct RT-qPCR kits (except for one commercial kit), and RT-LAMP showed sufficient sensitivities in clinical use to be selectively used in clinical settings and facilities. The rapid antigen test alone is not recommended for an initial COVID-19 diagnosis because of its low sensitivity.


Clinical characteristics and antibody response to SARS-CoV-2 spike 1 protein using VITROS Anti-SARS-CoV-2 antibody tests in COVID-19 patients in Japan.

  • Mayu Nagura-Ikeda‎ et al.
  • Journal of medical microbiology‎
  • 2021‎

Introduction. Serological tests for COVID-19 are important in providing results for surveillance and supporting diagnosis. Investigating the serological response in COVID-19 patients with different disease severity is important for assessing the clinical utility of serological assays.Gap Statement. However, few studies have investigated the clinical utility of antibody assays for COVID-19 or differences in antibody response in association with disease severity.Aim. The study aimed to evaluate the clinical characteristics and clinical utility of VITROS SARS-CoV-2 antibody tests according to COVID-19 severity in patients in Japan.Methodology. We analysed 255 serum specimens from 130 COVID-19 patients and examined clinical records and laboratory data. Presence of total (IgA, IgM, and IgG) and specific IgG antibody for the spike 1 antigen of SARS-CoV-2 was determined using VITROS Anti-SARS-CoV-2 antibody tests.Results. Overall, 98 (75.4 %) and 32 (24.6 %) patients had mild and severe COVID-19, respectively. On admission, 76 (58.5 %) and 45 (34.6 %) patients were positive for total and IgG antibody assays. Among 91 patients at discharge, 90 (98.9 %) and 81 (89.0 %) were positive for total and IgG antibody, respectively. Clinical background and laboratory findings on admission, but not the prevalence or concentration of total or IgG antibody, were associated with disease prognosis. Total and IgG antibody intensities were significantly higher in severe cases than in mild cases in serum collected >11 days after onset, but not within 10 days.Conclusion. VITROS Anti-SARS-CoV-2 total and IgG assays will be useful as supporting diagnostic and surveillance tools and for evaluation of humoral immune response to COVID-19. Optimal prediction of disease prognosis is made from considering both clinical history and laboratory findings.


Whole Genome Sequencing of Influenza A and B Viruses With the MinION Sequencer in the Clinical Setting: A Pilot Study.

  • Kazuo Imai‎ et al.
  • Frontiers in microbiology‎
  • 2018‎

Introduction: Whole genome sequencing (WGS) of influenza viruses is important for preparing vaccines and coping with newly emerging viruses. However, WGS is difficult to perform using conventional next-generation sequencers in developing countries, where facilities are often inadequate. In this study, we developed a high-throughput WGS method for influenza viruses in clinical specimens with the MinION portable sequencer. Methods: Whole genomes of influenza A and B viruses were amplified by multiplex RT-PCR from 13 clinical specimens collected in Tokyo, Japan. Barcode tags for multiplex MinION sequencing were added with each multiplex RT-PCR amplicon by nested PCR with custom barcoded primers. All barcoded amplicons were mixed and multiplex sequencing using the MinION sequencer with 1D2 sequencing kit. In addition, multiplex RT-PCR amplicons generated from each clinical specimen were sequenced using the Illumina MiSeq platform to validate the performance of MinION sequencer. The accuracy, recall, and precision rates of MinION sequencing were calculated by comparing the results of variant calling in the Illumina MiSeq platform and MinION sequencer. Results: Whole genomes of influenza A and B viruses were successfully amplified by multiplex RT-PCR from 13 clinical samples. We identified 6 samples as influenza type A virus H3N2 subtype and 7 as influenza B virus Yamagata lineage using the Illumina MiSeq platform. The overall accuracy, recall, and precision rates of the MinION sequencer were, respectively 99.95%, 89.41%, and 97.88% from 1D reads and 99.97%, 93.28%, and 99.86% from 1D2 reads. Conclusion: We developed a novel WGS method for influenza A and B viruses. It is necessary to improve read accuracy and analytical tools in order to better utilize the MinION sequencer for real-time monitoring of genetic rearrangements and for evaluation of newly emerging viruses.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: