Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 20 papers out of 58 papers

In Utero Bisphenol A Exposure Induces Abnormal Neuronal Migration in the Cerebral Cortex of Mice.

  • Wenting Ling‎ et al.
  • Frontiers in endocrinology‎
  • 2016‎

Bisphenol A (BPA) has been known to have endocrine-disrupting activity to induce reproductive and behavioral abnormalities in offspring of laboratory animal species. However, morphological basis of this abnormality during brain development is largely unknown. Cerebral cortex plays a crucial role in higher brain function, and its precisely laminated structure is formed by neuronal migration. In the present study, transfecting a plasmid (pCAG-mCherry) by in utero electroporation (IUE), we visualized developing neurons and investigated the possible effects of in utero BPA exposure on neuronal migration. Pregnant mice were exposed to BPA by osmotic pump at estimated daily doses of 0, 40 (BPA-40), or 400 (BPA-400) μg/kg from embryonic day 14.5 (E14.5) to E18.5. IUE was performed at E14.5 and neuronal migration was analyzed at E18.5. Compared with the control group, neuronal migration in the cortical plate was significantly decreased in the BPA-40 group; however, there was no significant difference in the BPA-400 group. Among several neuronal migration-related genes and cortical layer-specific genes, TrkB in the BPA-400 group was found significantly upregulated. In conclusion, in utero exposure to low BPA dose was found to disrupt neuronal migration in the cerebral cortex in a dose-specific manner.


Analysis of cardiomyocyte movement in the developing murine heart.

  • Hisayuki Hashimoto‎ et al.
  • Biochemical and biophysical research communications‎
  • 2015‎

The precise assemblage of several types of cardiac precursors controls heart organogenesis. The cardiac precursors show dynamic movement during early development and then form the complicated heart structure. However, cardiomyocyte movements inside the newly organized mammalian heart remain unclear. We previously established the method of ex vivo time-lapse imaging of the murine heart to study cardiomyocyte behavior by using the Fucci (fluorescent ubiquitination-based cell cycle indicator) system, which can effectively label individual G1, S/G2/M, and G1/S-transition phase nuclei in living cardiomyocytes as red, green, and yellow, respectively. Global analysis of gene expression in Fucci green positive ventricular cardiomyocytes confirmed that cell cycle regulatory genes expressed in G1/S, S, G2/M, and M phase transitions were upregulated. Interestingly, pathway analysis revealed that many genes related to the cell cycle were significantly upregulated in the Fucci green positive ventricular cardiomyocytes, while only a small number of genes related to cell motility were upregulated. Time-lapse imaging showed that murine proliferating cardiomyocytes did not exhibit dynamic movement inside the heart, but stayed on site after entering the cell cycle.


Both excitatory and inhibitory neurons transiently form clusters at the outermost region of the developing mammalian cerebral neocortex.

  • Minkyung Shin‎ et al.
  • The Journal of comparative neurology‎
  • 2019‎

During development of the mammalian cerebral neocortex, postmitotic excitatory neurons migrate toward the outermost region of the neocortex. We previously reported that this outermost region is composed of densely packed relatively immature neurons; we named this region, which is observed during the late stage of mouse neocortical development, the "primitive cortical zone (PCZ)." Here, we report that postmigratory immature neurons spend about 1-1.5 days in the PCZ. An electron microscopic analysis showed that the neurons in the PCZ tend to be in direct contact with each other, mostly in a radial direction, forming "primitive neuronal clusters" with a height of 3-7 cells and a width of 1-2 cells. A time-course analysis of fluorescently labeled neurons revealed that the neurons took their positions within the primitive clusters in an inside-out manner. The neurons initially participated in the superficial part of the clusters, gradually shifted their relative positions downward, and then left the clusters at the bottom of this structure. GABAergic inhibitory interneurons were also found within the primitive clusters in the developing mouse neocortex, suggesting that some clusters are composed of both excitatory neurons and inhibitory interneurons. Similar clusters were also observed in the outermost region of embryonic day (E) 78 cynomolgus monkey occipital cortex and 23 gestational week (GW) human neocortices. In the primate neocortices, including human, the presumptive primitive clusters seemed to expand in the radial direction more than that observed in mice, which might contribute to the functional integrity of the primate neocortex.


Upregulation of colonic luminal polyamines produced by intestinal microbiota delays senescence in mice.

  • Ryoko Kibe‎ et al.
  • Scientific reports‎
  • 2014‎

Prevention of quality of life (QOL) deterioration is associated with the inhibition of geriatric diseases and the regulation of brain function. However, no substance is known that prevents the aging of both body and brain. It is known that polyamine concentrations in somatic tissues (including the brain) decrease with increasing age, and polyamine-rich foods enhance longevity in yeast, worms, flies, and mice, and protect flies from age-induced memory impairment. A main source of exogenous polyamines is the intestinal lumen, where they are produced by intestinal bacteria. We found that arginine intake increased the concentration of putrescine in the colon and increased levels of spermidine and spermine in the blood. Mice orally administered with arginine in combination with the probiotic bifidobacteria LKM512 long-term showed suppressed inflammation, improved longevity, and protection from age-induced memory impairment. This study shows that intake of arginine and LKM512 may prevent aging-dependent declines in QOL via the upregulation of polyamines.


Impaired dendritic growth and positioning of cortical pyramidal neurons by activation of aryl hydrocarbon receptor signaling in the developing mouse.

  • Eiki Kimura‎ et al.
  • PloS one‎
  • 2017‎

The basic helix-loop-helix (bHLH) transcription factors exert multiple functions in mammalian cerebral cortex development. The aryl hydrocarbon receptor (AhR), a member of the bHLH-Per-Arnt-Sim subfamily, is a ligand-activated transcription factor reported to regulate nervous system development in both invertebrates and vertebrates, but the functions that AhR signaling pathway may have for mammalian cerebral cortex development remains elusive. Although the endogenous ligand involved in brain developmental process has not been identified, the environmental pollutant dioxin potently binds AhR and induces abnormalities in higher brain function of laboratory animals. Thus, we studied how activation of AhR signaling influences cortical development in mice. To this end, we produced mice expressing either constitutively active-AhR (CA-AhR), which has the capacity for ligand-independent activation of downstream genes, or AhR, which requires its ligands for activation. In brief, CA-AhR-expressing plasmid and AhR-expressing plasmid were each transfected into neural stems cells in the developing cerebrum by in utero electroporation on embryonic day 14.5. On postnatal day 14, mice transfected in utero with CA-AhR, but not those transfected with AhR, exhibited drastically reduced dendritic arborization of layer II/III pyramidal neurons and impaired neuronal positioning in the developing somatosensory cortex. The effects of CA-AhR were observed for dendrite development but not for the commissural fiber projection, suggesting a preferential influence on dendrites. The present results indicate that over-activation of AhR perturbs neuronal migration and morphological development in mammalian cortex, supporting previous observations of impaired dendritic structure, cortical dysgenesis, and behavioral abnormalities following perinatal dioxin exposure.


PDK1-Foxo1 in agouti-related peptide neurons regulates energy homeostasis by modulating food intake and energy expenditure.

  • Yongheng Cao‎ et al.
  • PloS one‎
  • 2011‎

Insulin and leptin intracellular signaling pathways converge and act synergistically on the hypothalamic phosphatidylinositol-3-OH kinase/3-phosphoinositide-dependent protein kinase 1 (PDK1). However, little is known about whether PDK1 in agouti-related peptide (AGRP) neurons contributes to energy homeostasis. We generated AGRP neuron-specific PDK1 knockout (AGRPPdk1(-/-)) mice and mice with selective expression of transactivation-defective Foxo1 (Δ256Foxo1(AGRP)Pdk1(-/-)). The AGRPPdk1(-/-) mice showed reductions in food intake, body length, and body weight. The Δ256Foxo1(AGRP)Pdk1(-/-) mice showed increased body weight, food intake, and reduced locomotor activity. After four weeks of calorie-restricted feeding, oxygen consumption and locomotor activity were elevated in AGRPPdk1(-/-) mice and reduced in Δ256Foxo1(AGRP)Pdk1(-/-) mice. In vitro, ghrelin-induced changes in [Ca(2+)](i) and inhibition of ghrelin by leptin were significantly attenuated in AGRPPdk1(-/-) neurons compared to control neurons. However, ghrelin-induced [Ca(2+)](i) changes and leptin inhibition were restored in Δ256Foxo1(AGRP)Pdk1(-/-) mice. These results suggested that PDK1 and Foxo1 signaling pathways play important roles in the control of energy homeostasis through AGRP-independent mechanisms.


DISC1-dependent switch from progenitor proliferation to migration in the developing cortex.

  • Koko Ishizuka‎ et al.
  • Nature‎
  • 2011‎

Regulatory mechanisms governing the sequence from progenitor cell proliferation to neuronal migration during corticogenesis are poorly understood. Here we report that phosphorylation of DISC1, a major susceptibility factor for several mental disorders, acts as a molecular switch from maintaining proliferation of mitotic progenitor cells to activating migration of postmitotic neurons in mice. Unphosphorylated DISC1 regulates canonical Wnt signalling via an interaction with GSK3β, whereas specific phosphorylation at serine 710 (S710) triggers the recruitment of Bardet-Biedl syndrome (BBS) proteins to the centrosome. In support of this model, loss of BBS1 leads to defects in migration, but not proliferation, whereas DISC1 knockdown leads to deficits in both. A phospho-dead mutant can only rescue proliferation, whereas a phospho-mimic mutant rescues exclusively migration defects. These data highlight a dual role for DISC1 in corticogenesis and indicate that phosphorylation of this protein at S710 activates a key developmental switch.


CXCR4 is required for proper regional and laminar distribution of cortical somatostatin-, calretinin-, and neuropeptide Y-expressing GABAergic interneurons.

  • Daisuke H Tanaka‎ et al.
  • Cerebral cortex (New York, N.Y. : 1991)‎
  • 2010‎

Cortical GABAergic interneurons are divided into various subtypes, with each subtype contributing to rich variety and fine details of inhibition. Despite the functional importance of each interneuron subtype, the molecular mechanisms that contribute to sorting them to their appropriate positions within the cortex remain unclear. Here, we show that the chemokine receptor CXCR4 regulates the regional and layer-specific distribution of interneuron subtypes. We removed Cxcr4 specifically in a subset of interneurons at a specific mouse embryonic developmental stage and analyzed the number of interneurons and their laminar distribution in 9 representative cortical regions comprehensively in adults. We found that the number of Cxcr4-deleted calretinin- and that of neuropeptide Y-expressing interneurons were reduced in most caudomedial and lateral cortical regions, respectively, and also in superficial layers. In addition, Cxcr4-deleted somatostatin-expressing interneurons showed a reduction in the number of superficial layers in certain cortical regions but of deep layers in others. These findings suggest that CXCR4 is required for proper regional and laminar distribution in a wider interneuron subpopulation than previously thought and may regulate the establishment of functional cortical circuitry in certain cortical regions and layers.


Identification of molecules preferentially expressed beneath the marginal zone in the developing cerebral cortex.

  • Kashiko Tachikawa‎ et al.
  • Neuroscience research‎
  • 2008‎

During cerebral cortical development, the majority of excitatory neurons are born near the ventricle and migrate radially toward the marginal zone (MZ). Since the cells invariably stop migrating beneath the MZ, neurons are aligned in an "inside-out" manner in the cortical plate (CP); that is, the early-born and late-born neurons are ultimately positioned in the deep and superficial layers, respectively. Since dramatic morphological changes occur in cells beneath the MZ, several events critical for proper neuronal maturation and layer formation must take place. In this study, we screened for molecules strongly expressed beneath the MZ, and identified 28 genes that are preferentially expressed in the upper half of the mouse CP on both embryonic day (E) 16.5 and E18.5. Expression analyses in reeler and yotari mice, in which neurons terminate migration throughout the CP, suggested that these genes were indeed related to the events beneath the MZ rather than unrelatedly induced by the structures near the brain surface. Pathway analyses suggested calcium signaling to have an important role in cells beneath the MZ. The gene list presented here will be useful for clarifying the molecular mechanisms that control cortical development.


Time constraints and positional cues in the developing cerebellum regulate Purkinje cell placement in the cortical architecture.

  • Barbara Carletti‎ et al.
  • Developmental biology‎
  • 2008‎

To elucidate the mechanisms that regulate neuronal placement and integration in the cerebellar circuitry, we assessed the fate of Purkinje cells transplanted to embryonic, juvenile and adult hosts, asking how architectural changes of the developing cortex influence their anatomical incorporation. Donor Purkinje cells navigate through the host parenchyma either along their natural migratory pathway or following unusual routes. In the latter case, donor neurons fail to orientate correctly and to establish the cortico-nuclear projection. Purkinje cells that follow the physiological route achieve the typical orientation and connectivity, but end displaced in the molecular layer if their arrival in the recipient cortex is delayed. Navigation routes and final settling of donor neurons vary with host age, depending on the ontogenetic construction of cortical layering, and particularly on the maturation of granule cells. The migratory behavior and homing of transplanted Purkinje cells is modified after external granular layer ablation, or neutralization of reelin signaling produced by granule cells. Therefore, although the cerebellar milieu remains receptive for Purkinje cells even after the end of development, correct placement of donor neurons depends on the timing of their migration, related to cerebellar developmental dynamics and granule cell layering.


CHARGE syndrome modeling using patient-iPSCs reveals defective migration of neural crest cells harboring CHD7 mutations.

  • Hironobu Okuno‎ et al.
  • eLife‎
  • 2017‎

CHARGE syndrome is caused by heterozygous mutations in the chromatin remodeler, CHD7, and is characterized by a set of malformations that, on clinical grounds, were historically postulated to arise from defects in neural crest formation during embryogenesis. To better delineate neural crest defects in CHARGE syndrome, we generated induced pluripotent stem cells (iPSCs) from two patients with typical syndrome manifestations, and characterized neural crest cells differentiated in vitro from these iPSCs (iPSC-NCCs). We found that expression of genes associated with cell migration was altered in CHARGE iPSC-NCCs compared to control iPSC-NCCs. Consistently, CHARGE iPSC-NCCs showed defective delamination, migration and motility in vitro, and their transplantation in ovo revealed overall defective migratory activity in the chick embryo. These results support the historical inference that CHARGE syndrome patients exhibit defects in neural crest migration, and provide the first successful application of patient-derived iPSCs in modeling craniofacial disorders.


The Secreted Glycoprotein Reelin Suppresses the Proliferation and Regulates the Distribution of Oligodendrocyte Progenitor Cells in the Embryonic Neocortex.

  • Himari Ogino‎ et al.
  • The Journal of neuroscience : the official journal of the Society for Neuroscience‎
  • 2020‎

Oligodendrocyte (OL) progenitor cells (OPCs) are generated, proliferate, migrate, and differentiate in the developing brain. Although the development of OPCs is prerequisite for normal brain function, the molecular mechanisms regulating their development in the neocortex are not fully understood. Several molecules regulate the tangential distribution of OPCs in the developing neocortex, but the cue molecule(s) that regulate their radial distribution remains unknown. Here, we demonstrate that the secreted glycoprotein Reelin suppresses the proliferation of OPCs and acts as a repellent for their migration in vitro These functions rely on the binding of Reelin to its receptors and on the signal transduction involving the intracellular protein Dab1. In the late embryonic neocortex of mice with attenuated Reelin signaling [i.e., Reelin heterozygote-deficient, Dab1 heterozygote-deficient mutant, or very low-density lipoprotein receptor (VLDLR)-deficient mice], the number of OPCs increased and their distribution shifted toward the superficial layers. In contrast, the number of OPCs decreased and they tended to distribute in the deep layers in the neocortex of mice with abrogated inactivation of Reelin by proteolytic cleavage, namely a disintegrin and metalloproteinase with thrombospondin type 1 motifs 3 (ADAMTS-3)-deficient mice and cleavage-resistant Reelin knock-in mice. Both male and female animals were used. These data indicate that Reelin-Dab1 signaling regulates the proliferation and radial distribution of OPCs in the late embryonic neocortex and that the regulation of Reelin function by its specific proteolysis is required for the normal development of OPCs.SIGNIFICANCE STATEMENT Here, we report that Reelin-Dab1 signaling regulates the proliferation and radial distribution of OPCs in the late embryonic mouse neocortex. Oligodendrocyte (OL) progenitor cells (OPCs) express Reelin signaling molecules and respond to Reelin stimulation. Reelin-Dab1 signaling suppresses the proliferation of OPCs both in vitro and in vivo Reelin repels OPCs in vitro, and the radial distribution of OPCs is altered in mice with either attenuated or augmented Reelin-Dab1 signaling. This is the first report identifying the secreted molecule that plays a role in the radial distribution of OPCs in the late embryonic neocortex. Our results also show that the regulation of Reelin function by its specific proteolysis is important for the normal development of OPCs.


A mouse model of Timothy syndrome exhibits altered social competitive dominance and inhibitory neuron development.

  • Shin-Ichiro Horigane‎ et al.
  • FEBS open bio‎
  • 2020‎

Multiple genetic factors related to autism spectrum disorder (ASD) have been identified, but the biological mechanisms remain obscure. Timothy syndrome (TS), associated with syndromic ASD, is caused by a gain-of-function mutation, G406R, in the pore-forming subunit of L-type Ca2+ channels, Cav 1.2. In this study, a mouse model of TS, TS2-neo, was used to enhance behavioral phenotyping and to identify developmental anomalies in inhibitory neurons. Using the IntelliCage, which enables sequential behavioral tasks without human handling and mouse isolation stress, high social competitive dominance was observed in TS2-neo mice. Furthermore, histological analysis demonstrated inhibitory neuronal abnormalities in the neocortex, including an excess of smaller-sized inhibitory presynaptic terminals in the somatosensory cortex of young adolescent mice and higher numbers of migrating inhibitory neurons from the medial ganglionic eminence during embryonic development. In contrast, no obvious changes in excitatory synaptic terminals were found. These novel neural abnormalities in inhibitory neurons of TS2-neo mice may result in a disturbed excitatory/inhibitory (E/I) balance, a key feature underlying ASD.


Impact of Intestinal Microbiota on Cognitive Flexibility by a Novel Touch Screen Operant System Task in Mice.

  • Hazuki Tamada‎ et al.
  • Frontiers in neuroscience‎
  • 2022‎

Cognitive flexibility is the ability to rapidly adapt to a constantly changing environment. It is impaired by aging as well as in various neurological diseases, including dementia and mild cognitive impairment. In rodents, although many behavioral test protocols have been reported to assess learning and memory dysfunction, few protocols address cognitive flexibility. In this study, we developed a novel cognitive flexibility test protocol using touch screen operant system. This test comprises a behavioral sequencing task, in which mice are required to discriminate between the "rewarded" and "never-rewarded" spots and shuttle between the two distantly positioned rewarded spots, and serial reversals, in which the diagonal spatial patterns of rewarded and never-rewarded spots were reversely changed repetitively. Using this test protocol, we demonstrated that dysbiosis treated using streptomycin induces a decline in cognitive flexibility, including perseveration and persistence. The relative abundances of Firmicutes and Bacteroides were lower and higher, respectively, in the streptomycin-treated mice with less cognitive flexibility than in the control mice. This is the first report to directly show that intestinal microbiota affects cognitive flexibility.


Distinctive Regulation of Emotional Behaviors and Fear-Related Gene Expression Responses in Two Extended Amygdala Subnuclei With Similar Molecular Profiles.

  • Shuhei Ueda‎ et al.
  • Frontiers in molecular neuroscience‎
  • 2021‎

The central nucleus of the amygdala (CeA) and the lateral division of the bed nucleus of the stria terminalis (BNST) are the two major nuclei of the central extended amygdala that plays essential roles in threat processing, responsible for emotional states such as fear and anxiety. While some studies suggested functional differences between these nuclei, others showed anatomical and neurochemical similarities. Despite their complex subnuclear organization, subnuclei-specific functional impact on behavior and their underlying molecular profiles remain obscure. We here constitutively inhibited neurotransmission of protein kinase C-δ-positive (PKCδ+) neurons-a major cell type of the lateral subdivision of the CeA (CeL) and the oval nucleus of the BNST (BNSTov)-and found striking subnuclei-specific effects on fear- and anxiety-related behaviors, respectively. To obtain molecular clues for this dissociation, we conducted RNA sequencing in subnuclei-targeted micropunch samples. The CeL and the BNSTov displayed similar gene expression profiles at the basal level; however, both displayed differential gene expression when animals were exposed to fear-related stimuli, with a more robust expression change in the CeL. These findings provide novel insights into the molecular makeup and differential engagement of distinct subnuclei of the extended amygdala, critical for regulation of threat processing.


Heterozygous Dab1 Null Mutation Disrupts Neocortical and Hippocampal Development.

  • Takao Honda‎ et al.
  • eNeuro‎
  • 2023‎

Loss-of-function mutations in Reelin and DAB1 signaling pathways disrupt proper neuronal positioning in the cerebral neocortex and hippocampus, but the underlying molecular mechanisms remain elusive. Here, we report that heterozygous yotari mice harboring a single autosomal recessive yotari mutation of Dab1 exhibited a thinner neocortical layer 1 than wild-type mice on postnatal day (P)7. However, a birth-dating study suggested that this reduction was not caused by failure of neuronal migration. In utero electroporation-mediated sparse labeling revealed that the superficial layer neurons of heterozygous yotari mice tended to elongate their apical dendrites within layer 2 than within layer 1. In addition, the CA1 pyramidal cell layer in the caudo-dorsal hippocampus was abnormally split in heterozygous yotari mice, and a birth-dating study revealed that this splitting was caused mainly by migration failure of late-born pyramidal neurons. Adeno-associated virus (AAV)-mediated sparse labeling further showed that many pyramidal cells within the split cell had misoriented apical dendrites. These results suggest that regulation of neuronal migration and positioning by Reelin-DAB1 signaling pathways has unique dependencies on Dab1 gene dosage in different brain regions.


Cdk5 phosphorylation of ErbB4 is required for tangential migration of cortical interneurons.

  • Sonja Rakić‎ et al.
  • Cerebral cortex (New York, N.Y. : 1991)‎
  • 2015‎

Interneuron dysfunction in humans is often associated with neurological and psychiatric disorders, such as epilepsy, schizophrenia, and autism. Some of these disorders are believed to emerge during brain formation, at the time of interneuron specification, migration, and synapse formation. Here, using a mouse model and a host of histological and molecular biological techniques, we report that the signaling molecule cyclin-dependent kinase 5 (Cdk5), and its activator p35, control the tangential migration of interneurons toward and within the cerebral cortex by modulating the critical neurodevelopmental signaling pathway, ErbB4/phosphatidylinositol 3-kinase, that has been repeatedly linked to schizophrenia. This finding identifies Cdk5 as a crucial signaling factor in cortical interneuron development in mammals.


Automated test of behavioral flexibility in mice using a behavioral sequencing task in IntelliCage.

  • Toshihiro Endo‎ et al.
  • Behavioural brain research‎
  • 2011‎

There has been a long-standing need to develop efficient and standardized behavioral test methods for evaluating higher-order brain functions in mice. Here, we developed and validated a behavioral flexibility test in mice using IntelliCage, a fully automated behavioral analysis system for mice in a group-housed environment. We first developed a "behavioral sequencing task" in the IntelliCage that enables us to assess the learning ability of place discrimination and behavioral sequence for reward acquisition. In the serial reversal learning using the task, the discriminated spatial patterns of the rewarded and never-rewarded places were serially reversed, and thus, mice were accordingly expected to realign the previously acquired behavioral sequence. In general, the tested mice showed rapid acquisition of the behavioral sequencing task and behavioral flexibility in the subsequent serial reversal stages both in intra- and inter-session analyses. It was found that essentially the same results were obtained among three different laboratories, which confirm the high stability of the present test protocol in different strains of mice (C57BL/6, DBA/2, and ICR). In particular, the most trained cohort of C57BL/6 mice achieved a markedly rapid adaptation to the reversal task in the final phase of the long-term serial reversal test, which possibly indicated that the mice adapted to the "reversal rule" itself. In conclusion, the newly developed behavioral test was shown to be a valid assay of behavioral flexibility in mice, and is expected to be utilized in tests of mouse models of cognitive deficits.


Cellular composition and organization of the subventricular zone and rostral migratory stream in the adult and neonatal common marmoset brain.

  • Kazunobu Sawamoto‎ et al.
  • The Journal of comparative neurology‎
  • 2011‎

The adult subventricular zone (SVZ) of the lateral ventricle contains neural stem cells. In rodents, these cells generate neuroblasts that migrate as chains toward the olfactory bulb along the rostral migratory stream (RMS). The neural-stem-cell niche at the ventricular wall is conserved in various animal species, including primates. However, it is unclear how the SVZ and RMS organization in nonhuman primates relates to that of rodents and humans. Here we studied the SVZ and RMS of the adult and neonatal common marmoset (Callithrix jacchus), a New World primate used widely in neuroscience, by electron microscopy, and immunohistochemical detection of cell-type-specific markers. The marmoset SVZ contained cells similar to type B, C, and A cells of the rodent SVZ in their marker expression and morphology. The adult marmoset SVZ had a three-layer organization, as in the human brain, with ependymal, hypocellular, and astrocyte-ribbon layers. However, the hypocellular layer was very thin or absent in the adult-anterior and neonatal SVZ. Anti-PSA-NCAM staining of the anterior SVZ in whole-mount ventricular wall preparations of adult marmosets revealed an extensive network of elongated cell aggregates similar to the neuroblast chains in rodents. Time-lapse recordings of marmoset SVZ explants cultured in Matrigel showed the neuroblasts migrating in chains, like rodent type A cells. These results suggest that some features of neurogenesis and neuronal migration in the SVZ are common to marmosets, humans, and rodents. This basic description of the adult and neonatal marmoset SVZ will be useful for future studies on adult neurogenesis in primates.


Reelin receptors ApoER2 and VLDLR are expressed in distinct spatiotemporal patterns in developing mouse cerebral cortex.

  • Yuki Hirota‎ et al.
  • The Journal of comparative neurology‎
  • 2015‎

In mammalian developing brain, neuronal migration is regulated by a variety of signaling cascades, including Reelin signaling. Reelin is a glycoprotein that is mainly secreted by Cajal-Retzius neurons in the marginal zone, playing essential roles in the formation of the layered neocortex via its receptors, apolipoprotein E receptor 2 (ApoER2) and very low density lipoprotein receptor (VLDLR). However, the precise mechanisms by which Reelin signaling controls the neuronal migration process remain unclear. To gain insight into how Reelin signaling controls individual migrating neurons, we generated monoclonal antibodies against ApoER2 and VLDLR and examined the localization of Reelin receptors in the developing mouse cerebral cortex. Immunohistochemical analyses revealed that VLDLR is localized to the distal portion of leading processes in the marginal zone (MZ), whereas ApoER2 is mainly localized to neuronal processes and the cell membranes of multipolar cells in the multipolar cell accumulation zone (MAZ). These different expression patterns may contribute to the distinct actions of Reelin on migrating neurons during both the early and late migratory stages in the developing cerebral cortex.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: