Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 20 papers out of 51 papers

Netrin 1 provides a chemoattractive cue for the ventral migration of GnRH neurons in the chick forebrain.

  • Shizuko Murakami‎ et al.
  • The Journal of comparative neurology‎
  • 2010‎

Hypothalamic gonadotropin-releasing hormone (GnRH) neurons originate in the olfactory placode and migrate to the forebrain during embryonic development. We found that GnRH neurons migrated in two different modes in the chick medial telencephalon: they initially underwent axophilic migration in association with a subset of olfactory fibers in a dorsocaudal direction. This was followed by ventrally directed tangential migration to the basal forebrain. Since many of the ventrally migrating GnRH neurons did not follow distinct fiber fascicles, it is proposed that diffusible guidance molecules played a role in this migratory process. A long-range diffusible factor, netrin 1, was expressed in the lower part of the commissural plate and the subpallial septum, but not along the axophilic migratory route of GnRH neurons. Failure of ventrally directed migration of GnRH neurons and their misrouting to the dorsomedial forebrain was induced by misexpression of netrin 1 in the dorsocaudal part of the septum near the top of the commissural plate, which is where the migration of GnRH neurons changed to a ventral direction. In such cases, a subset of olfactory fibers also extended, but close contact between aberrant fibers and misrouted GnRH neurons did not exist. A coculture experiment demonstrated that netrin 1 exerts an attractive effect on migrating GnRH neurons. These results provide evidence that netrin 1 acts as chemoattractant to migrating GnRH neurons at the dorsocaudal part of the septum and has the potential to regulate the ventral migration of GnRH neurons to the ventral septum and the preoptic area.


Promotion of atherosclerosis by Helicobacter cinaedi infection that involves macrophage-driven proinflammatory responses.

  • Shahzada Khan‎ et al.
  • Scientific reports‎
  • 2014‎

Helicobacter cinaedi is the most common enterohepatic Helicobacter species that causes bacteremia in humans, but its pathogenicity is unclear. Here, we investigated the possible association of H. cinaedi with atherosclerosis in vivo and in vitro. We found that H. cinaedi infection significantly enhanced atherosclerosis in hyperlipidaemic mice. Aortic root lesions in infected mice showed increased accumulation of neutrophils and F4/80(+) foam cells, which was due, at least partly, to bacteria-mediated increased expression of proinflammatory genes. Although infection was asymptomatic, detection of cytolethal distending toxin RNA of H. cinaedi indicated aorta infection. H. cinaedi infection altered expression of cholesterol receptors and transporters in cultured macrophages and caused foam cell formation. Also, infection induced differentiation of THP-1 monocytes. These data provide the first evidence of a pathogenic role of H. cinaedi in atherosclerosis in experimental models, thereby justifying additional investigations of the possible role of enterohepatic Helicobacter spp. in atherosclerosis and cardiovascular disease.


In Situ Evaluation of Estrogen Receptor Dimers in Breast Carcinoma Cells: Visualization of Protein-Protein Interactions.

  • Erina Iwabuchi‎ et al.
  • Acta histochemica et cytochemica‎
  • 2017‎

The estrogen receptor (ER) functions as a dimer and is involved in several different biological functions. However ER dimeric proteins have not been identified by in situ methodologies. Structured illumination microscopy (SIM) has been recently developed, which enabled the localization of protein and protein interaction. Therefore, in this study, we firstly demonstrated that ERs formed both homodimers and heterodimers in breast carcinoma cell lines using Nikon's SIM (N-SIM). ERα/α homodimers were detected in the nuclei of both ERα-positive MCF-7 and T-47D cells; 23.0% and 13.4% of ERα proteins formed ERα/α homodimers, respectively. ERα/β heterodimers were also detected in MCF-7 and T-47D. Approximately 6.6% of both ERα and ERβ1 proteins formed ERα/β1 heterodimers in MCF-7. In addition, 18.1% and 22.4% of ERα and ERβ proteins formed ERα/β2 heterodimers and ERα/β5 heterodimers in MCF-7, respectively. In addition, by using proximity ligation assay (PLA) in MCF-7, estradiol-induced ERα/α homodimers and ERα/β1 heterodimers were both detected after 15 to 45 min of treatment and at 15 min, respectively. The percentage of total ER proteins could also be determined using N-SIM. By using both methods, it has become possible to evaluate precise localization and ratio of ER dimers among different cell types.


Enhanced Cellular Polysulfides Negatively Regulate TLR4 Signaling and Mitigate Lethal Endotoxin Shock.

  • Tianli Zhang‎ et al.
  • Cell chemical biology‎
  • 2019‎

Cysteine persulfide and cysteine polysulfides are cysteine derivatives having sulfane sulfur atoms bound to cysteine thiol. Accumulating evidence has suggested that cysteine persulfides/polysulfides are abundant in prokaryotes and eukaryotes and play important roles in diverse biological processes such as antioxidant host defense and redox-dependent signal transduction. Here, we show that enhancement of cellular polysulfides by using polysulfide donors developed in this study resulted in marked inhibition of lipopolysaccharide (LPS)-initiated macrophage activation. Polysulfide donor treatment strongly suppressed LPS-induced pro-inflammatory responses in macrophages by inhibiting Toll-like receptor 4 (TLR4) signaling. Other TLR signaling stimulants-including zymosan A-TLR2 and poly(I:C)-TLR3-were also significantly suppressed by polysulfur donor treatment. Administration of polysulfide donors protected mice from lethal endotoxin shock. These data indicate that cellular polysulfides negatively regulate TLR4-mediated pro-inflammatory signaling and hence constitute a potential target for inflammatory disorders.


Effect of Surface Modifications on Cellular Uptake of Gold Nanorods in Human Primary Cells and Established Cell Lines.

  • Yuxiang Xiao‎ et al.
  • ACS omega‎
  • 2020‎

Endocytosis is a cellular process in which substances are engulfed by the cellular membrane and budded off inside the cells to form vesicles. It plays key roles in controlling nutritional component uptake, immune responses, and other biological functions. A comprehensive understanding of endocytosis gives insights into such physiological functions and informs the design of medical nanodevices that need to enter cells. So far, endocytosis has been studied mostly using established cell lines. However, the established cell lines generally originate from cancer cells or are transformed from normal cells into immortalized cells. Therefore, primary cells may give us more reliable information about the endocytosis process of nanoparticles into cells. In this research, we studied the uptake of gold nanorods (AuNRs) with four different surface modifications (anionic/cationic polymers and anionic/cationic silica) by two kinds of primary cells (human monocyte-derived macrophages and human umbilical vein endothelial cells) and two kinds of established cell lines (HeLa cells and RAW 264.7 cells). We found that the surface properties of AuNRs affected their cellular uptake, and the cationic surface tended was advantageous for uptake, but it depended on the cell types. Control experiments using inhibitors of representative endocytosis pathways (macropinocytosis, clathrin-mediated endocytosis, and caveolae-mediated endocytosis) indicated that primary cells had a dominant uptake pathway for internalization of the AuNRs, whereas the established cell lines had multiple pathways. Our results provide us with novel insights into cellular uptake of AuNRs in that they depend not only on surface characters of the nanoparticles but also cell types, such as primary cells and established cell lines.


Changes in Wnt-Dependent Neuronal Morphology Underlie the Anatomical Diversification of Neocortical Homologs in Amniotes.

  • Tadashi Nomura‎ et al.
  • Cell reports‎
  • 2020‎

The six-layered neocortex is a shared characteristic of all mammals, but not of non-mammalian species, and its formation requires an inside-out pattern of neuronal migration. The extant reptilian dorsal cortex is thought to represent an ancestral form of the neocortex, although how the reptilian three-layered cortex is formed is poorly understood. Here, we show unique patterns of lamination and neuronal migration in the developing reptilian cortex. While the multipolar-to-bipolar transition of migrating neurons is essential for mammalian cortical development, the reptilian cortex lacks bipolar-shaped migrating neurons, resulting in an outside-in pattern of cortical development. Furthermore, dynamic regulation of Wnt signal strengths contributes to neuronal morphological changes, which is conserved across species. Our data preclude the idea that the six-layered mammalian neocortex emerged by simple addition to the reptilian dorsal cortex but suggest that the acquisition of a novel neuronal morphology based on conserved developmental programs contributed to neocortical evolution.


Exploring Protein⁻Protein Interaction in the Study of Hormone-Dependent Cancers.

  • Yasuhiro Miki‎ et al.
  • International journal of molecular sciences‎
  • 2018‎

Estrogen receptors promote target gene transcription when they form a dimer, in which two identical (homodimer) or different (heterodimer) proteins are bound to each other. In hormone-dependent cancers, hormone receptor dimerization plays pivotal roles, not only in the pathogenesis or development of the tumors, but also in the development of therapeutic resistance. Protein⁻protein interactions (PPIs), including dimerization and complex formation, have been also well-known to be required for proteins to exert their functions. The methods which could detect PPIs are genetic engineering (i.e., resonance energy transfer) and/or antibody technology (i.e., co-immunoprecipitation) using cultured cells. In addition, visualization of the target proteins in tissues can be performed using antigen⁻antibody reactions, as in immunohistochemistry. Furthermore, development of microscopic techniques (i.e., electron microscopy and confocal laser microscopy) has made it possible to visualize intracellular and/or intranuclear organelles. We have recently reported the visualization of estrogen receptor dimers in breast cancer tissues by using the in situ proximity ligation assay (PLA). PLA was developed along the lines of antibody technology development, and this assay has made it possible to visualize PPIs in archival tissue specimens. Localization of PPI in organelles has also become possible using super-resolution microscopes exceeding the resolution limit of conventional microscopes. Therefore, in this review, we summarize the methodologies used for studying PPIs in both cells and tissues, and review the recently reported studies on PPIs of hormones.


SIRT7 regulates the nuclear export of NF-κB p65 by deacetylating Ran.

  • Shihab U Sobuz‎ et al.
  • Biochimica et biophysica acta. Molecular cell research‎
  • 2019‎

Sirtuin 7 (SIRT7) is an NAD+-dependent lysine deacetylase that regulates diverse biological processes. We recently observed that SIRT7 deficiency suppresses the nuclear accumulation of p65, which is a component of nuclear factor kappa B. However, the underlying molecular mechanism remains elusive. In this study, we demonstrated that SIRT7 interacts with a small GTPase, Ras-related nuclear antigen (Ran), and deacetylates Ran at K37. The nuclear export of p65 was facilitated in SIRT7-deficient fibroblast cells, while the nuclear export was inhibited in SIRT7-deficient cells expressing K37R-Ran (deacetylation-mimicking mutant). Additionally, the nuclear export of p65 in wild-type fibroblast cells was promoted by K37Q-Ran (acetylation-mimicking mutant). K37Q-Ran exhibited an increased ability to bind to chromosome region maintenance 1 (CRM1), which is a major nuclear receptor that mediates the export of cargo proteins, and enhanced the binding between p65 and CRM1. These data suggest that SIRT7 is a lysine deacetylase that targets the K37 residue of Ran to suppress the nuclear export of p65.


ATP exposure stimulates glutathione efflux as a necessary switch for NLRP3 inflammasome activation.

  • Tianli Zhang‎ et al.
  • Redox biology‎
  • 2021‎

The NLRP3 inflammasome is a multiprotein complex responsible for the maturation of precursor forms of interleukin (IL)-1β and IL-18 into active proinflammatory cytokines. Increasing evidence suggests that modulation of redox homeostasis contributes to the activation of the NLRP3 inflammasome. However, specific mechanistic details remain unclear. We demonstrate here that ATP exposure evoked a sharp decrease in glutathione (GSH) levels in macrophages, which led to NLRP3 inflammasome activation. We detected an increase in GSH levels in culture supernatants that was comparable to the GSH decrease in macrophages, which suggests that exposure to ATP stimulated GSH efflux. Exogenous addition of P2X7 receptor antagonist, GSH, or the oxidized form GSSG attenuated this efflux. Also, exogenous GSH or GSSG strongly inhibited NLRP3 inflammasome activation in vitro and in vivo. These data suggest that GSH efflux controls NLRP3 inflammasome activation, which may lead to development of novel therapeutic strategies for NLRP3 inflammasome-associated disorders.


Augmentation of EPR Effect and Efficacy of Anticancer Nanomedicine by Carbon Monoxide Generating Agents.

  • Jun Fang‎ et al.
  • Pharmaceutics‎
  • 2019‎

One obstacle to the successful delivery of nanodrugs into solid tumors is the heterogeneity of an enhanced permeability and retention (EPR) effect as a result of occluded or embolized tumor blood vessels. Therefore, the augmentation of the EPR effect is critical for satisfactory anticancer nanomedicine. In this study, we focused on one vascular mediator involved in the EPR effect, carbon monoxide (CO), and utilized two CO generating agents, one is an extrinsic CO donor (SMA/CORM2 micelle) and another is an inducer of endogenous CO generation via heme oxygenase-1 (HO-1) induction that is carried out using pegylated hemin. Both agents generated CO selectively in solid tumors, which resulted in an enhanced EPR effect and a two- to three-folds increased tumor accumulation of nanodrugs. An increase in drug accumulation in the normal tissue did not occur with the treatment of CO generators. In vivo imaging also clearly indicated a more intensified fluorescence of macromolecular nanoprobe in solid tumors when combined with these CO generators. Consequently, the combination of CO generators with anticancer nanodrugs resulted in an increased anticancer effect in the different transplanted solid tumor models. These findings strongly warrant the potential application of these CO generators as EPR enhancers in order to enhance tumor detection and therapy using nanodrugs.


Rapid and serum-insensitive endocytotic delivery of proteins using biotinylated polymers attached via multivalent hydrophobic anchors.

  • Kyohei Tobinaga‎ et al.
  • Journal of controlled release : official journal of the Controlled Release Society‎
  • 2014‎

We have designed biotinylated polymers as synthetic receptors that have multiple alkyl groups for endocytotic delivery of target proteins. The polymers were stably attached to a cell surface via multivalent anchoring. The presented biotin was bound to streptavidin (SA) on the cell surface, and, via an endocytotic pathway, the cell rapidly internalized the biotinylated polymer/SA complex. The cell's uptake of the complex was not inhibited by the presence of 10% fetal bovine serum, and its efficacy for the uptake of SA was the highest when compared with commercial reagents and single-anchored-type synthetic receptors. The synthetic receptor-mediated endocytosis can be used generally for other kind of protein by using SA as an adaptor molecule between a target protein and the cell-surface presented biotin.


Roles of Aryl Hydrocarbon Receptor in Aromatase-Dependent Cell Proliferation in Human Osteoblasts.

  • Yasuhiro Miki‎ et al.
  • International journal of molecular sciences‎
  • 2017‎

Aryl hydrocarbon receptor (AhR) is a ligand-activated transcription factor and its expression is influenced by environmental compounds, such as 3-methylcholanthrene (3-MC) and β-naphthoflavone (β-NF). AhR and its downstream genes, such as CYP1A1, are considered to play a pivotal role in xenobiotic responses. AhR signaling has also been proposed to mediate osteogenesis in experimental animals, but its details have remained unclear. Therefore, in this study, we examined the possible roles of AhR in human bone. Immunohistochemical analysis revealed that AhR was detected in both osteoblasts and osteoclasts. We then screened AhR-target genes using a microarray analysis in human osteoblastic hFOB cells. Results of microarray and subsequent PCR analysis did reveal that estrogen metabolizing and synthesizing enzymes, such as CYP1B1 and aromatase, were increased by 3-MC in hFOB and osteosarcoma cell line, MG-63. The subsequent antibody cytokine analysis also demonstrated that interleukin-1β and -6 expression was increased by 3-MC and β-NF in hFOB cells and these interleukins were well known to induce aromatase. We then examined the cell proliferation rate of hFOB and MG-63 cells co-treated with 3-MC and testosterone as an aromatase substrate. The status of cell proliferation in both hFOB and MG-63 cells was stimulated by 3-MC and testosterone treatment, which was also inhibited by an estrogen blocker, aromatase inhibitor, or AhR antagonist. These findings indicated that AhR could regulate estrogen synthesis and metabolism in bone tissues through cytokine/aromatase signaling.


SIRT7 has a critical role in bone formation by regulating lysine acylation of SP7/Osterix.

  • Masatoshi Fukuda‎ et al.
  • Nature communications‎
  • 2018‎

SP7/Osterix (OSX) is a master regulatory transcription factor that activates a variety of genes during differentiation of osteoblasts. However, the influence of post-translational modifications on the regulation of its transactivation activity is largely unknown. Here, we report that sirtuins, which are NAD(+)-dependent deacylases, regulate lysine deacylation-mediated transactivation of OSX. Germline Sirt7 knockout mice develop severe osteopenia characterized by decreased bone formation and an increase of osteoclasts. Similarly, osteoblast-specific Sirt7 knockout mice showed attenuated bone formation. Interaction of SIRT7 with OSX leads to the activation of transactivation by OSX without altering its protein expression. Deacylation of lysine (K) 368 in the C-terminal region of OSX by SIRT7 promote its N-terminal transactivation activity. In addition, SIRT7-mediated deacylation of K368 also facilitates depropionylation of OSX by SIRT1, thereby increasing OSX transactivation activity. In conclusion, our findings suggest that SIRT7 has a critical role in bone formation by regulating acylation of OSX.


Aligned neurite bundles of granule cells regulate orientation of Purkinje cell dendrites by perpendicular contact guidance in two-dimensional and three-dimensional mouse cerebellar cultures.

  • Isao Nagata‎ et al.
  • The Journal of comparative neurology‎
  • 2006‎

To identify structures that determine the 90 degree orientation of thin espalier dendritic trees of Purkinje cells with respect to parallel fibers (axonal neurite bundles of granule cells) in the cerebellar cortex, we designed five types of two-dimensional and three-dimensional cell and tissue cultures of cerebella from postnatal mice and analyzed the orientation of Purkinje cell dendrites with respect to neurite bundles and astrocyte fibers by immunofluorescence double or triple staining. We cultured dissociated cerebellar cells on micropatterned substrates and preformed neurite bundles of a microexplant culture two-dimensionally and in matrix gels three-dimensionally. Dendrites, but not axons, of Purkinje cells extended toward the neurites of granule cells and oriented at right angles two-dimensionally to aligned neurite bundles in the three cultures. In a more organized explant proper of the microexplant culture, Purkinje cell dendrites extended toward thin aligned neurite bundles not only consistently at right angles but also two-dimensionally. However, in the "organotypic microexplant culture," in which three-dimensionally aligned thick neurite bundles mimicking parallel fibers were produced, Purkinje cell dendrites often oriented perpendicular to the thick bundles three-dimensionally. Astrocytes were abundant in all cultures, and there was no definite correlation between the presence of and orientation to Purkinje cell dendrites, although their fibers were frequently associated in parallel with dendrites in the organotypic microexplant culture. Therefore, Purkinje cells may grow their dendrites to the newly produced neurite bundles of parallel fibers in the cerebellar cortex and be oriented at right angles three-dimensionally mainly via "perpendicular contact guidance."


Platelet-Like Gold Nanostars for Cancer Therapy: The Ability to Treat Cancer and Evade Immune Reactions.

  • Min Woo Kim‎ et al.
  • Frontiers in bioengineering and biotechnology‎
  • 2020‎

The cell membrane-coating strategy has opened new opportunities for the development of biomimetic and multifunctional drug delivery platforms. Recently, a variety of gold nanoparticles, which can combine with blood cell membranes, have been shown to provide an effective approach for cancer therapy. Meanwhile, this class of hybrid nanostructures can deceive the immunological system to exhibit synergistic therapeutic effects. Here, we synthesized red blood cell (RBC) and platelet membrane-coated gold nanostars containing curcumin (R/P-cGNS) and evaluated whether R/P-cGNS had improved anticancer efficacy. We also validated a controlled release profile under near-infrared irradiation for the ability to target melanoma cells and to have an immunomodulatory effect on macrophages. RBC membrane coating provided self-antigens; therefore, it could evade clearance by macrophages, while platelet membrane coating provided targetability to cancer cells. Additionally, the nutraceutical curcumin provided anticancer and anti-inflammatory effects. In conclusion, the results presented in this study demonstrated that R/P-cGNS can deliver drugs to the target region and enhance anticancer effects while avoiding macrophage phagocytosis. We believe that R/P-cGNS can be a new design of the cell-based hybrid system for effective cancer therapy.


Photochemical OFF/ON Cytotoxicity Switching by Using a Photochromic Surfactant with Visible Light Irradiation.

  • Mai Shinohara‎ et al.
  • ACS omega‎
  • 2022‎

Photochemical switching of cytotoxicity by using spiropyran compounds with pyridinium and alkyl groups was investigated. The spiropyran compound, SP6, with a hexyl group as the alkyl group displayed negative photochromism, in which the hydrophilic open merocyanine form (MC form) was stable and isomerized to the hydrophobic closed spiro form (SP form) by visible light irradiation. Both MC and SP forms exhibited amphiphilicity because of the hydrophobic hexyl and hydrophilic pyridinium groups introduced. Cytotoxicity toward HeLa cells was observed for both MC and SP forms of SP6 at concentrations higher than the critical aggregation concentration of the isomers CACMC and CACSP (CACMC > CACSP), respectively. In contrast, cytotoxicity by SP6 was activated by visible light irradiation at concentrations between CACMC and CACSP; thus, photochemical switching of cytotoxicity from the OFF to ON state was achieved. Cytotoxicity was revealed to be caused by disruption of the cell membrane. The results provide an important step in developing novel next-generation photochemotherapy drugs.


pH-sensitive multi-drug liposomes targeting folate receptor β for efficient treatment of non-small cell lung cancer.

  • Yong Il Park‎ et al.
  • Journal of controlled release : official journal of the Controlled Release Society‎
  • 2021‎

Non-small cell lung cancer (NSCLC) is the leading cause of lung cancer-related deaths worldwide. Tumor-associated macrophages (TAMs), which can be polarized into tumor-promoting M2 phenotype, overexpress folate receptor beta (FRβ) and are associated with poor prognosis in NSCLC. In addition, calpain-2 (CAPN2) is overexpressed in NSCLC and is involved in tumor growth. To improve the anticancer efficacy of drugs and reduce their side effects in the treatment of NSCLC, it is important to develop smart drug delivery systems with specific targeting ability and controlled release mechanisms. In this study, FRβ-targeted pH-sensitive liposomes were designed as carriers to ensure efficient drug delivery and acid-responsive release in NSCLC cells. Folate-mediated targeting of FRβ in M2 TAMs and NSCLC cells effectively inhibited tumor growth and the stimulus-responsive drug release reduced the toxic side effects of the drug. The combination of doxycycline (anti-CAPN2) and docetaxel (anticancer drug) showed a synergistic inhibitory effect on tumor growth by suppressing CAPN2 expression.


A Neanderthal/Denisovan GLI3 variant contributes to anatomical variations in mice.

  • Ako Agata‎ et al.
  • Frontiers in cell and developmental biology‎
  • 2023‎

Changes in genomic structures underlie phenotypic diversification in organisms. Amino acid-changing mutations affect pleiotropic functions of proteins, although little is known about how mutated proteins are adapted in existing developmental programs. Here we investigate the biological effects of a variant of the GLI3 transcription factor (GLI3R1537C) carried in Neanderthals and Denisovans, which are extinct hominins close to modern humans. R1537C does not compromise protein stability or GLI3 activator-dependent transcriptional activities. In contrast, R1537C affects the regulation of downstream target genes associated with developmental processes. Furthermore, genome-edited mice carrying the Neanderthal/Denisovan GLI3 mutation exhibited various alterations in skeletal morphology. Our data suggest that an extinct hominin-type GLI3 contributes to species-specific anatomical variations, which were tolerated by relaxed constraint in developmental programs during human evolution.


Lipid-mediated delivery of peptide nucleic acids to pulmonary endothelium.

  • Xing Yuan‎ et al.
  • Biochemical and biophysical research communications‎
  • 2003‎

Peptide nucleic acid (PNA) is a DNA/RNA mimic in which the phosphodiester (PO) linkage is replaced with a peptide bond. It has a number of unique properties compared to currently used oligonucleotides including higher affinity towards RNA or DNA target, resistance to nucleases or proteases, and minimal non-specific interactions with proteins. Clinical applications of PNA, however, are limited by its inefficient intracellular delivery. In this study, we have shown that delivery of PNA to pulmonary endothelium in intact mice can be greatly improved via hybridization with a short PO oligonucleotide that serves as a carrier to form complexes with cationic liposomes. We have also shown for the first time that unlike a CpG DNA oligo that is highly proinflammatory, a CG-containing PNA is inert in triggering TNF-alpha response in cultured macrophages and in mice. Thus delivery of PNA to pulmonary endothelium may prove to be a therapeutically useful for the treatment of pulmonary vascular diseases.


An inhibition of p62/SQSTM1 caused autophagic cell death of several human carcinoma cells.

  • Kaito Nihira‎ et al.
  • Cancer science‎
  • 2014‎

p62/SQSTM1 (p62) is a multifunctional protein implicated in several signal transduction pathways and selectively degraded by autophagy, a process for lysosomal degradation of both protein and organelle. p62 was also recently reported to be overexpressed in various malignancies and its inhibition to suppress carcinoma cell proliferation. However, its correlation with autophagy in carcinoma cells has remained largely unknown. Therefore, in this study, we examined the effects of p62 inhibition on the regulation of autophagy and cell survival in p62-positive carcinoma cells. p62-silencing dramatically suppressed cell proliferation and induced autophagy in p62 expressing PC9 and A549 cells. Electron microscopical analysis revealed the formation of autophagosomes with multilayer membranes caused by p62-silencing. p62 silencing-mediated reduced cell viability was restored by both genomic and pharmacological inhibition of autophagy but not that of apoptosis. These findings were also detected in several types of carcinoma cell lines including adenocarcinomas and squamous cell carcinomas. Results of our present study revealed that an inhibition of p62 resulted in the formation of mis-regulated autophagosomes with multilayer membranes and an autophagic cell death, and p62 can therefore be an attractive target for the development of anti-neoplastic agents.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: