Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 8 papers out of 8 papers

Roles of intraloops-2 and -3 and the proximal C-terminus in signalling pathway selection from the human calcium-sensing receptor.

  • Mahvash A Goolam‎ et al.
  • FEBS letters‎
  • 2014‎

The calcium-sensing receptor (CaSR) couples to signalling pathways via intracellular loops 2 and 3, and the C-terminus. However, the requirements for signalling are largely undefined. We investigated the impacts of selected point mutations in iL-2 (F706A) and iL-3 (L797A and E803A), and a truncation of the C-terminus (R866X) on extracellular Ca(2+) (Ca(2+)o)-stimulated phosphatidylinositol-specific phospholipase-C (PI-PLC) and various other signalling responses. CaSR-mediated activation of PI-PLC was markedly attenuated in all four mutants and similar suppressions were observed for Ca(2+)o-stimulated ERK1/2 phosphorylation. Ca(2+)o-stimulated intracellular Ca(2+) (Ca(2+)i) mobilization, however, was relatively preserved for the iL-2 and iL-3 mutants and suppression of adenylyl cyclase was unaffected by either E803A or R866X. The CaSR selects for specific signalling pathways via the proximal C-terminus and key residues in iL-2, iL-3.


Cell Surface Calcium-Sensing Receptor Heterodimers: Mutant Gene Dosage Affects Ca2+ Sensing but Not G Protein Interaction.

  • Mahvash A Goolam‎ et al.
  • Journal of bone and mineral research : the official journal of the American Society for Bone and Mineral Research‎
  • 2022‎

The calcium-sensing receptor is a homodimeric class C G protein-coupled receptor (GPCR) that senses extracellular Ca2+ (Ca2+ o ) via a dimeric extracellular Venus flytrap (VFT) unit that activates G protein-dependent signaling via twin Cysteine-rich domains linked to transmembrane heptahelical (HH) bundles. It plays a key role in the regulation of human calcium and thus mineral metabolism. However, the nature of interactions between VFT units and HH bundles, and the impacts of heterozygous or homozygous inactivating mutations, which have implications for disorders of calcium metabolism are not yet clearly defined. Herein we generated CaSR-GABAB1 and CaSR-GABAB2 chimeras subject to GABAB -dependent endoplasmic reticulum sorting to traffic mutant heterodimers to the cell surface. Transfected HEK-293 cells were assessed for Ca2+ o -stimulated Ca2+ i mobilization using mutations in either the VFT domains and/or HH bundle intraloop-2 or intraloop-3. When the same mutation was present in both VFT domains of receptor dimers, analogous to homozygous neonatal severe hyperparathyroidism (NSHPT), receptor function was markedly impaired. Mutant heterodimers containing one wild-type (WT) and one mutant VFT domain, however, corresponding to heterozygous familial hypocalciuric hypercalcemia type-1 (FHH-1), supported maximal signaling with reduced Ca2+ o potency. Thus two WT VFT domains were required for normal Ca2+ o potency and there was a pronounced gene-dosage effect. In contrast, a single WT HH bundle was insufficient for maximal signaling and there was no functional difference between heterodimers in which the mutation was present in one or both intraloops; ie, no gene-dosage effect. Finally, we observed that the Ca2+ o -stimulated CaSR operated exclusively via signaling in-trans and not via combined in-trans and in-cis signaling. We consider how receptor asymmetry may support the underlying mechanisms. © 2022 The Authors. Journal of Bone and Mineral Research published by Wiley Periodicals LLC on behalf of American Society for Bone and Mineral Research (ASBMR).


Expertly validated models and phylogenetically-controlled analysis suggests responses to climate change are related to species traits in the order lagomorpha.

  • Katie Leach‎ et al.
  • PloS one‎
  • 2015‎

Climate change during the past five decades has impacted significantly on natural ecosystems, and the rate of current climate change is of great concern among conservation biologists. Species Distribution Models (SDMs) have been used widely to project changes in species' bioclimatic envelopes under future climate scenarios. Here, we aimed to advance this technique by assessing future changes in the bioclimatic envelopes of an entire mammalian order, the Lagomorpha, using a novel framework for model validation based jointly on subjective expert evaluation and objective model evaluation statistics. SDMs were built using climatic, topographical, and habitat variables for all 87 lagomorph species under past and current climate scenarios. Expert evaluation and Kappa values were used to validate past and current models and only those deemed 'modellable' within our framework were projected under future climate scenarios (58 species). Phylogenetically-controlled regressions were used to test whether species traits correlated with predicted responses to climate change. Climate change is likely to impact more than two-thirds of lagomorph species, with leporids (rabbits, hares, and jackrabbits) likely to undertake poleward shifts with little overall change in range extent, whilst pikas are likely to show extreme shifts to higher altitudes associated with marked range declines, including the likely extinction of Kozlov's Pika (Ochotona koslowi). Smaller-bodied species were more likely to exhibit range contractions and elevational increases, but showing little poleward movement, and fecund species were more likely to shift latitudinally and elevationally. Our results suggest that species traits may be important indicators of future climate change and we believe multi-species approaches, as demonstrated here, are likely to lead to more effective mitigation measures and conservation management. We strongly advocate studies minimising data gaps in our knowledge of the Order, specifically collecting more specimens for biodiversity archives and targeting data deficient geographic regions.


Receptor expression modulates calcium-sensing receptor mediated intracellular Ca2+ mobilization.

  • Sarah C Brennan‎ et al.
  • Endocrinology‎
  • 2015‎

Calcium-sensing receptors (CaSRs) are class C G protein-coupled receptors that respond to physiological activators, including extracellular Ca2+ (Cao2+) and L-amino acids as well as the pharmaceutical calcimimetic, cinacalcet. Unlike Cao2+, which is an orthosteric agonist, L-amino acids and cinacalcet are positive allosteric modulators. CaSR expression levels vary considerably between tissues, but the physiological significance of these differences in expression for the effects of its activators is unknown. To investigate the impact of receptor expression on CaSR-mediated signaling we used a tetracycline-inducible expression system and focused on intracellular Ca2+ (Cai2+) responses in single cells and considered both population and single-cell behavior. Increased receptor expression positively modulated CaSR-mediated Cai2+ mobilization in response to elevated Cao2+, the amino acid L-phenylalanine, or the calcimimetic cinacalcet. It lowered threshold concentrations for the initiation of Cai2+ oscillations and for their transformation to sustained Cai2+ elevations, and it increased the proportions of responding cells. It also positively modulated the frequency of Cai2+ oscillations with the order of effectiveness: cinacalcet equal to or greater than Cao2+ greater than L-phenylalanine. The results indicate that receptor expression modulates key characteristics of the Cai2+ response at the single-cell level as well as the amplitude of whole-tissue CaSR-mediated responses by recruiting quiescent cells into the active pool of responding cells. By lowering the threshold concentrations for Cao2+- and L-amino acid-induced responses below the physiological levels of these nutrients in plasma, mechanisms that up-regulate receptor expression can control tissue function in the absence of dynamic changes in ligand concentration.


Murine GPRC6A Mediates Cellular Responses to L-Amino Acids, but Not Osteocalcin Variants.

  • Patricia Rueda‎ et al.
  • PloS one‎
  • 2016‎

Phenotyping of Gprc6a KO mice has shown that this promiscuous class C G protein coupled receptor is variously involved in regulation of metabolism, inflammation and endocrine function. Such effects are described as mediated by extracellular calcium, L-amino acids, the bone-derived peptide osteocalcin (OCN) and the male hormone testosterone, introducing the concept of a bone-energy-metabolism-reproduction functional crosstalk mediated by GPRC6A. However, whilst the calcium and L-amino acid-sensing properties of GPRC6A are well established, verification of activity of osteocalcin at both human and mouse GPRC6A in vitro has proven somewhat elusive. This study characterises the in vitro pharmacology of mouse GPRC6A in response to its putative ligands in both recombinant and endogenous GPRC6A-expressing cells. Using cell signalling, and glucagon-like peptide (GLP)-1 and insulin release assays, our results confirm that basic L-amino acids act as agonists of the murine GPRC6A receptor in both recombinant cells and immortalised entero-endocrine and pancreatic β-cells. In contrast, our studies do not support a role for OCN as a direct ligand for mouse GPRC6A, suggesting that the reported in vivo effects of OCN that require GPRC6A may be indirect, rather than via direct activation of the receptor.


Pharmacological hallmarks of allostery at the M4 muscarinic receptor elucidated through structure and dynamics.

  • Ziva Vuckovic‎ et al.
  • eLife‎
  • 2023‎

Allosteric modulation of G protein-coupled receptors (GPCRs) is a major paradigm in drug discovery. Despite decades of research, a molecular-level understanding of the general principles that govern the myriad pharmacological effects exerted by GPCR allosteric modulators remains limited. The M4 muscarinic acetylcholine receptor (M4 mAChR) is a validated and clinically relevant allosteric drug target for several major psychiatric and cognitive disorders. In this study, we rigorously quantified the affinity, efficacy, and magnitude of modulation of two different positive allosteric modulators, LY2033298 (LY298) and VU0467154 (VU154), combined with the endogenous agonist acetylcholine (ACh) or the high-affinity agonist iperoxo (Ipx), at the human M4 mAChR. By determining the cryo-electron microscopy structures of the M4 mAChR, bound to a cognate Gi1 protein and in complex with ACh, Ipx, LY298-Ipx, and VU154-Ipx, and applying molecular dynamics simulations, we determine key molecular mechanisms underlying allosteric pharmacology. In addition to delineating the contribution of spatially distinct binding sites on observed pharmacology, our findings also revealed a vital role for orthosteric and allosteric ligand-receptor-transducer complex stability, mediated by conformational dynamics between these sites, in the ultimate determination of affinity, efficacy, cooperativity, probe dependence, and species variability. There results provide a holistic framework for further GPCR mechanistic studies and can aid in the discovery and design of future allosteric drugs.


Negative allosteric modulators of the human calcium-sensing receptor bind to overlapping and distinct sites within the 7-transmembrane domain.

  • Tracy M Josephs‎ et al.
  • British journal of pharmacology‎
  • 2020‎

Negative allosteric modulators (NAMs) that target the calcium-sensing receptor (CaS receptor) were originally developed for the treatment of osteoporosis by stimulating the release of endogenous parathyroid hormone, but failed in human clinical trials. Several chemically and structurally distinct NAM scaffolds have been described, but it is not known how these different scaffolds interact with the CaS receptor to inhibit receptor signalling in response to agonists.


Dynamics of GLP-1R peptide agonist engagement are correlated with kinetics of G protein activation.

  • Giuseppe Deganutti‎ et al.
  • Nature communications‎
  • 2022‎

The glucagon-like peptide-1 receptor (GLP-1R) has broad physiological roles and is a validated target for treatment of metabolic disorders. Despite recent advances in GLP-1R structure elucidation, detailed mechanistic understanding of how different peptides generate profound differences in G protein-mediated signalling is still lacking. Here we combine cryo-electron microscopy, molecular dynamics simulations, receptor mutagenesis and pharmacological assays, to interrogate the mechanism and consequences of GLP-1R binding to four peptide agonists; glucagon-like peptide-1, oxyntomodulin, exendin-4 and exendin-P5. These data reveal that distinctions in peptide N-terminal interactions and dynamics with the GLP-1R transmembrane domain are reciprocally associated with differences in the allosteric coupling to G proteins. In particular, transient interactions with residues at the base of the binding cavity correlate with enhanced kinetics for G protein activation, providing a rationale for differences in G protein-mediated signalling efficacy from distinct agonists.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: