Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 20 papers out of 32 papers

IRS1 regulation by Wnt/beta-catenin signaling and varied contribution of IRS1 to the neoplastic phenotype.

  • Guido T Bommer‎ et al.
  • The Journal of biological chemistry‎
  • 2010‎

Dysregulation of beta-catenin levels and localization and constitutive activation of beta-catenin/TCF (T cell factor)-regulated gene expression occur in many cancers, including the majority of colorectal carcinomas and a subset of ovarian endometrioid adenocarcinomas. Based on the results of microarray-based gene expression profiling we found the insulin receptor substrate 1 (IRS1) gene as one of the most highly up-regulated genes upon ectopic expression of a mutant, constitutively active form of beta-catenin in the rat kidney epithelial cell line RK3E. We demonstrate expression of IRS1 can be directly activated by beta-catenin, likely in part via beta-catenin/TCF binding to TCF consensus binding elements located in the first intron and downstream of the IRS1 transcriptional start site. Consistent with the proposal that beta-catenin is an important regulator of IRS1 expression in vivo, we observed that IRS1 is highly expressed in many cancers with constitutive stabilization of beta-catenin, such as colorectal carcinomas and ovarian endometrioid adenocarcinomas. Using a short hairpin RNA approach to abrogate IRS1 expression and function, we found that IRS1 function is required for efficient de novo neoplastic transformation by beta-catenin in RK3E cells. Our findings add to the growing body of data implicating IRS1 as a critical signaling component in cancer development and progression.


DNA methylation inhibition increases T cell KIR expression through effects on both promoter methylation and transcription factors.

  • Ying Liu‎ et al.
  • Clinical immunology (Orlando, Fla.)‎
  • 2009‎

Killer-cell immunoglobulin-like receptor (KIR) genes are a polymorphic family expressed on NK cells, and "senescent" CD28- T cells implicated in cardiovascular disease. KIR promoters are highly homologous, and NK expression is regulated by DNA methylation. T cell KIR regulation is poorly understood. We asked if epigenetic mechanisms and/or transcription factor alterations determine T cell KIR expression. DNA methylation inhibition activated multiple KIR genes in normal T cells. KIR2DL2 and KIR2DL4 were selected for further study. Expression of both was associated with promoter demethylation, and methylation of the promoters in reporter constructs suppressed expression. KIR reporter construct expression also increased in demethylated T cells and required Ets1, Sp1 and AML sites, implying effects on transcription factors. This was confirmed for Sp1. These results indicate that KIR genes are suppressed by DNA methylation in most T cells, and DNA demethylation promotes their expression through effects on both chromatin structure and transcription factors.


EGFR Overexpressed in Colonic Neoplasia Can be Detected on Wide-Field Endoscopic Imaging.

  • Juan Zhou‎ et al.
  • Clinical and translational gastroenterology‎
  • 2015‎

Colorectal cancer initially lies dormant as dysplasia, a premalignant state that provides an opportunity for early cancer detection. Dysplasia can be flat in morphology, focal in size, and patchy in distribution, and thus it appears "invisible" on conventional wide-field endoscopy.


Comprehensive proteomic profiling of aldehyde dehydrogenases in lung adenocarcinoma cell lines.

  • Qing Zhang‎ et al.
  • International journal of proteomics‎
  • 2011‎

We have explored the potential of proteomic profiling to contribute to the delineation of the range of expression and subcellular localization of aldehyde dehydrogenases (ALDHs) in lung adenocarcinoma. In-depth quantitative proteomics was applied to 40 lung adenocarcinoma cell lines resulting in the identification of the known members of the ALDH family. Substantial heterogeneity in the level and occurrence of ALDHs in total lysates and on the cell surface and in their release into the culture media was observed based on mass spectrometry counts. A distinct pattern of expression of ALDHs was observed in cells exhibiting epithelial features relative to cells exhibiting mesenchymal features. Strikingly elevated levels of ALDH1A1 were observed in two cell lines. We also report on the occurrence of an immune response to ALDH1A1 in lung cancer.


The PIAS-like Coactivator Zmiz1 Is a Direct and Selective Cofactor of Notch1 in T Cell Development and Leukemia.

  • Nancy Pinnell‎ et al.
  • Immunity‎
  • 2015‎

Pan-NOTCH inhibitors are poorly tolerated in clinical trials because NOTCH signals are crucial for intestinal homeostasis. These inhibitors might also promote cancer because NOTCH can act as a tumor suppressor. We previously reported that the PIAS-like coactivator ZMIZ1 is frequently co-expressed with activated NOTCH1 in T cell acute lymphoblastic leukemia (T-ALL). Here, we show that similar to Notch1, Zmiz1 was important for T cell development and controlled the expression of certain Notch target genes, such as Myc. However, unlike Notch, Zmiz1 had no major role in intestinal homeostasis or myeloid suppression. Deletion of Zmiz1 impaired the initiation and maintenance of Notch-induced T-ALL. Zmiz1 directly interacted with Notch1 via a tetratricopeptide repeat domain at a special class of Notch-regulatory sites. In contrast to the Notch cofactor Maml, which is nonselective, Zmiz1 was selective. Thus, targeting the NOTCH1-ZMIZ1 interaction might combat leukemic growth while avoiding the intolerable toxicities of NOTCH inhibitors.


Distinctive serum protein profiles involving abundant proteins in lung cancer patients based upon antibody microarray analysis.

  • Wei-Min Gao‎ et al.
  • BMC cancer‎
  • 2005‎

Cancer serum protein profiling by mass spectrometry has uncovered mass profiles that are potentially diagnostic for several common types of cancer. However, direct mass spectrometric profiling has a limited dynamic range and difficulties in providing the identification of the distinctive proteins. We hypothesized that distinctive profiles may result from the differential expression of relatively abundant serum proteins associated with the host response.


Candidate downstream regulated genes of HOX group 13 transcription factors with and without monomeric DNA binding capability.

  • Thomas M Williams‎ et al.
  • Developmental biology‎
  • 2005‎

Hox genes encode transcription factors that regulate the morphogenesis of developing embryos. In mammals, knowledge of the genetic pathways, including the possible direct or indirect targets, regulated by HOX proteins is extremely limited. To identify the downstream genes regulated by posterior HOX proteins, we expressed HOXA13 in mouse embryonic fibroblasts lacking paralog group 13 expression using a bicistronic HOXA13/EGFP retroviral vector. Microarray analysis identified 68 genes with significant, reproducible RNA expression changes (50 activated; 18 repressed) in stable HOXA13-expressing cells. Genes with the GO annotation terms "extracellular matrix" and "basement membrane" were greatly overrepresented, and several were shown to be regulated by HOX proteins in other studies. Among the genes strongly activated by HOXA13 were Enpp2, a bifunctional enzyme known to modulate tumor and normal cell motility and which is expressed in precartilaginous condensations; Fhl1, a transcription factor implicated in muscle cell differentiation and development; and M32486, a putative integral membrane molecule expressed in the female reproductive tract. Expression differences in the HOXA13-expressing cells were confirmed for selected downstream genes using semi-quantitative RT-PCR, and in vivo coexpression with Hoxa13 in the limb interdigital mesenchyme was demonstrated for many. For two candidates, Igfbp4 and Fstl, interdigital limb bud expression was reduced in Hoxa13 mutants. To explore whether paralogous and nonparalogous HOX proteins could regulate the same genes, we created new HOX cell lines and examined the expression of selected genes identified by the HOXA13 screen. HOXD13 similarly activated/repressed 6 tested candidates, demonstrating that multiple downstream genetic pathways may be regulated by paralog HOX proteins. In contrast, HOXA9 was only able to repress expression of some gene targets. A HOXD13 mutant, HOXD13(IQN >)(AAA), incapable of monomeric DNA-binding, activated the expression of 5 HOXA13-upregulated genes; but was incapable of repressing the expression of Ngef and Casp8ap2. Our results suggest that HOX protein-protein interactions without direct HOX DNA-binding may play a larger role in HOX transcriptional regulation than generally assumed, and DNA-binding appears critical for repression.


Aging accelerates while multiparity delays tumorigenesis in mouse models of high-grade serous carcinoma.

  • Xiaoman Hou‎ et al.
  • Gynecologic oncology‎
  • 2022‎

The "incessant ovulation" hypothesis links increased risk for tubo-ovarian high-grade serous carcinoma (HGSC) due to more ovulations and reduced risk conferred by pre-menopausal exposures like oral contraceptive use, multiparity, and breastfeeding. However, most women diagnosed with HGSC are postmenopausal, implying age is a major risk factor for HGSC. Our mouse model for HGSC, based on tamoxifen (TAM)-induced somatic inactivation of the Brca1, Trp53, Rb1, and Nf1 (BPRN) tumor suppressor genes in oviductal epithelium, recapitulates key genetic, histopathologic, and biological features of human HGSCs. We aimed to credential the model for future efforts to define biological and risk modification factors in HGSC pathogenesis.


Loss of Pin1 Suppresses Hedgehog-Driven Medulloblastoma Tumorigenesis.

  • Tao Xu‎ et al.
  • Neoplasia (New York, N.Y.)‎
  • 2017‎

Medulloblastoma is the most common malignant brain tumor in children. Therapeutic approaches to medulloblastoma (combination of surgery, radiotherapy, and chemotherapy) have led to significant improvements, but these are achieved at a high cost to quality of life. Alternative therapeutic approaches are needed. Genetic mutations leading to the activation of the Hedgehog pathway drive tumorigenesis in ~30% of medulloblastoma. In a yeast two-hybrid proteomic screen, we discovered a novel interaction between GLI1, a key transcription factor for the mediation of Hedgehog signals, and PIN1, a peptidylprolyl cis/trans isomerase that regulates the postphosphorylation fate of its targets. The GLI1/PIN1 interaction was validated by reciprocal pulldowns using epitope-tagged proteins in HEK293T cells as well as by co-immunoprecipiations of the endogenous proteins in a medulloblastoma cell line. Our results support a molecular model in which PIN1 promotes GLI1 protein abundance, thus contributing to the positive regulation of Hedgehog signals. Most importantly, in vivo functional analyses of Pin1 in the GFAP-tTA;TRE-SmoA1 mouse model of Hedgehog-driven medulloblastoma demonstrate that the loss of Pin1 impairs tumor development and dramatically increases survival. In summary, the discovery of the GLI1/PIN1 interaction uncovers PIN1 as a novel therapeutic target in Hedgehog-driven medulloblastoma tumorigenesis.


Detection of colonic neoplasia in vivo using near-infrared-labeled peptide targeting cMet.

  • Xiaoli Wu‎ et al.
  • Scientific reports‎
  • 2019‎

White light colonoscopy is widely used to detect colorectal polyps, but flat and depressed lesions are often missed. Here, we report a molecular imaging strategy to potentially improve diagnostic performance by developing a fluorescently-labeled peptide specific for cMet. This 7mer is conjugated to Cy5.5, a near-infrared (NIR) cyanine dye. Specific binding to cMet was confirmed by cell staining, knockdown, and competition assays. The probe showed high binding affinity (kd = 57 nM) and fast onset (k = 1.6 min) to support topical administration in vivo. A mouse model (CPC;Apc) that develops spontaneous adenomas that overexpress cMet was used to demonstrate feasibility for real time in vivo imaging. This targeting ligand showed significantly higher target-to-background (T/B) ratio for polypoid and non-polypoid lesions by comparison with a scrambled control peptide. Immunofluorescence staining on human colon specimens show significantly greater binding to tubular and sessile serrated adenomas versus hyperplastic polyps and normal mucosa. These results demonstrate a peptide specific for cMet that is promising for endoscopic detection of pre-malignant lesions and guiding of tissue biopsy.


ARID1A-mutated ovarian cancers depend on HDAC6 activity.

  • Benjamin G Bitler‎ et al.
  • Nature cell biology‎
  • 2017‎

ARID1A, encoding a subunit of the SWI/SNF chromatin-remodelling complex, is the most frequently mutated epigenetic regulator across all human cancers. ARID1A and TP53 mutations are typically mutually exclusive. Therapeutic approaches that correlate with this genetic characteristic remain to be explored. Here, we show that HDAC6 activity is essential in ARID1A-mutated ovarian cancers. Inhibition of HDAC6 activity using a clinically applicable small-molecule inhibitor significantly improved the survival of mice bearing ARID1A-mutated tumours. This correlated with the suppression of growth and dissemination of ARID1A-mutated, but not wild-type, tumours. The dependence on HDAC6 activity in ARID1A-mutated cells correlated with a direct transcriptional repression of HDAC6 by ARID1A. HDAC6 inhibition selectively promoted apoptosis of ARID1A-mutated cells. HDAC6 directly deacetylates Lys120 of p53, a pro-apoptotic post-translational modification. Thus, ARID1A mutation inactivates the apoptosis-promoting function of p53 by upregulating HDAC6. Together, these results indicate that pharmacological inhibition of HDAC6 is a therapeutic strategy for ARID1A-mutated cancers.


Two Distinct Categories of Focal Deletions in Cancer Genomes.

  • Megha Rajaram‎ et al.
  • PloS one‎
  • 2013‎

One of the key questions about genomic alterations in cancer is whether they are functional in the sense of contributing to the selective advantage of tumor cells. The frequency with which an alteration occurs might reflect its ability to increase cancer cell growth, or alternatively, enhanced instability of a locus may increase the frequency with which it is found to be aberrant in tumors, regardless of oncogenic impact. Here we've addressed this on a genome-wide scale for cancer-associated focal deletions, which are known to pinpoint both tumor suppressor genes (tumor suppressors) and unstable loci. Based on DNA copy number analysis of over one-thousand human cancers representing ten different tumor types, we observed five loci with focal deletion frequencies above 5%, including the A2BP1 gene at 16p13.3 and the MACROD2 gene at 20p12.1. However, neither RNA expression nor functional studies support a tumor suppressor role for either gene. Further analyses suggest instead that these are sites of increased genomic instability and that they resemble common fragile sites (CFS). Genome-wide analysis revealed properties of CFS-like recurrent deletions that distinguish them from deletions affecting tumor suppressor genes, including their isolation at specific loci away from other genomic deletion sites, a considerably smaller deletion size, and dispersal throughout the affected locus rather than assembly at a common site of overlap. Additionally, CFS-like deletions have less impact on gene expression and are enriched in cell lines compared to primary tumors. We show that loci affected by CFS-like deletions are often distinct from known common fragile sites. Indeed, we find that each tumor tissue type has its own spectrum of CFS-like deletions, and that colon cancers have many more CFS-like deletions than other tumor types. We present simple rules that can pinpoint focal deletions that are not CFS-like and more likely to affect functional tumor suppressors.


Profiling of pathway-specific changes in gene expression following growth of human cancer cell lines transplanted into mice.

  • Chad Creighton‎ et al.
  • Genome biology‎
  • 2003‎

Tumor cells cultured in vitro are widely used to investigate the molecular biology of cancers and to evaluate responses to drugs and other agents. The full extent to which gene expression in cancer cells is modulated by extrinsic factors and by the microenvironment in which the cancer cells reside remains to be determined. Two cancer cell lines (A549 lung adenocarcinoma and U118 glioblastoma) were transplanted subcutaneously into immunodeficient mice to form tumors. Global gene-expression profiles of the tumors were determined, based on analysis of expression of human genes, and compared with expression profiles of the cell lines grown in culture.


Overexpressed Claudin-1 Can Be Visualized Endoscopically in Colonic Adenomas In Vivo.

  • Emily F Rabinsky‎ et al.
  • Cellular and molecular gastroenterology and hepatology‎
  • 2016‎

Conventional white-light colonoscopy aims to reduce the incidence and mortality of colorectal cancer (CRC). CRC has been found to arise from missed polypoid and flat precancerous lesions. We aimed to establish proof-of-concept for real-time endoscopic imaging of colonic adenomas using a near-infrared peptide that is specific for claudin-1.


Granulocyte-derived TNFα promotes vascular and hematopoietic regeneration in the bone marrow.

  • Emily Bowers‎ et al.
  • Nature medicine‎
  • 2018‎

Endothelial cells are a critical component of the bone marrow (BM) stromal network, which maintains and regulates hematopoietic cells. Vascular regeneration precedes, and is necessary for, successful hematopoietic stem cell (HSC) transplantation, the only cure for most hematopoietic diseases. Recent data suggest that mature hematopoietic cells regulate BM stromal-cell function. Whether a similar cross-talk regulates the BM vasculature is not known. Here we found that donor hematopoietic cells act on sinusoidal endothelial cells and induce host blood vessel and hematopoietic regeneration after BM transplantation in mice. Adoptive transfer of BM, but not peripheral, granulocytes prevented the death of mice transplanted with limited numbers of HSCs and accelerated recovery of host vessels and hematopoietic cells. Moreover, selective granulocyte ablation in vivo impaired vascular and hematopoietic regeneration after BM transplantation. Gene expression analyses indicated that granulocytes are the main source of the cytokine TNFα, whereas its receptor TNFR1 is selectively upregulated in regenerating blood vessels. In adoptive transfer experiments, wild type, but not Tnfa-/-, granulocytes induced vascular recovery, and wild-type granulocyte transfer did not prevent death or promote vascular regeneration in Tnfr1-/-; Tnfr2-/- mice. Thus, by delivering TNFα to endothelial cells, granulocytes promote blood vessel growth and hematopoietic regeneration. Manipulation of the cross-talk between granulocytes and endothelial cells may lead to new therapeutic approaches to improve blood vessel regeneration and increase survival and hematopoietic recovery after HSC transplantation.


Identification and validation of FGFR2 peptide for detection of early Barrett's neoplasia.

  • Juan Zhou‎ et al.
  • Oncotarget‎
  • 2017‎

The incidence of esophageal adenocarcinoma (EAC) is rising rapidly, and early detection within the precursor state of Barrett's esophagus (BE) is challenged by flat premalignant lesions that are difficult detect with conventional endoscopic surveillance. Overexpression of cell surface fibroblast growth factor receptor 2 (FGFR2) is an early event in progression of BE to EAC, and is a promising imaging target. We used phage display to identify the peptide SRRPASFRTARE that binds specifically to the extracellular domain of FGFR2. We labeled this peptide with a near-infrared fluorophore Cy5.5, and validated the specific binding to FGFR2 overexpressed in cells in vitro. We found high affinity kd = 68 nM and rapid binding k = 0.16 min-1 (6.2 min). In human esophageal specimens, we found significantly greater peptide binding to high-grade dysplasia (HGD) versus either BE or normal squamous epithelium, and good correlation with anti-FGFR2 antibody. We also observed significantly greater peptide binding to excised specimens of esophageal squamous cell carcinoma and gastric cancer compared to normal mucosa. These results demonstrate potential for this FGFR2 peptide to be used as a clinical imaging agent to guide tissue biopsy and improve methods for early detection of EAC and potentially other epithelial-derived cancers.


Trp53 null and R270H mutant alleles have comparable effects in regulating invasion, metastasis, and gene expression in mouse colon tumorigenesis.

  • Jinyu Tang‎ et al.
  • Laboratory investigation; a journal of technical methods and pathology‎
  • 2019‎

Somatic APC (adenomatous polyposis coli), TP53, KRAS mutations are present in roughly 80%, 60%, and 40%, respectively, of human colorectal cancers (CRCs). Most TP53 mutant alleles in CRCs encode missense mutant proteins with loss-of-function (LOF) of p53's transcriptional activity and dominant negative (DN) effects on wild-type p53 function. Missense mutant p53 proteins have been reported to exert gain-of-function (GOF) effects in cancer. We compared the phenotypic effects of the common human cancer-associated TP53 R273H missense mutation to p53 null status in a genetically engineered mouse CRC model. Inactivation of one allele of Apc together with activation of a Kras mutant allele in mouse colon epithelium instigated development of serrated and hyperplastic epithelium and adenomas (AK mice). Addition of a Trp53R270H or Trp53null mutant allele to the model (AKP mice) led to markedly shortened survival and increased tumor burden relative to that of AK mice, including adenocarcinomas in AKP mice. Comparable life span and tumor burden were seen in AKP mice carrying Trp53R270H or Trp53null alleles, along with similar frequencies of spontaneous metastasis to lymph nodes, lung, and liver. The fraction of adenocarcinomas with submucosa or deeper invasion was higher in AKP270/fl mice than in AKPfl/fl mice, but the incidence of adenocarcinomas per mouse did not differ significantly between AKPfl/fl and AKP270/fl mice. In line with their comparable biological behaviors, mouse primary tumors and tumor-derived organoids with the Trp53R270H or Trp53null alleles had highly similar gene expression profiles. Human CRCs with TP53 R273 missense mutant or null alleles also had essentially homogeneous gene expression patterns. Our findings indicate the R270H/R273H p53 mutant protein does not manifest definite GOF biological effects in mouse and human CRCs, suggesting possible GOF effects of mutant p53 in cancer phenotypes are likely allele-specific and/or context-dependent.


Cell State of Origin Impacts Development of Distinct Endometriosis-Related Ovarian Carcinoma Histotypes.

  • Ian Beddows‎ et al.
  • Cancer research‎
  • 2024‎

Clear cell ovarian carcinoma (CCOC) and endometrioid ovarian carcinoma (ENOC) are ovarian carcinoma histotypes, which are both thought to arise from ectopic endometrial (or endometrial-like) cells through an endometriosis intermediate. How the same cell type of origin gives rise to two morphologically and biologically different histotypes has been perplexing, particularly given that recurrent genetic mutations are common to both and present in nonmalignant precursors. We used RNA transcription analysis to show that the expression profiles of CCOC and ENOC resemble those of normal endometrium at secretory and proliferative phases of the menstrual cycle, respectively. DNA methylation at the promoter of the estrogen receptor (ER) gene (ESR1) was enriched in CCOC, which could potentially lock the cells in the secretory state. Compared with normal secretory-type endometrium, CCOC was further defined by increased expression of cysteine and glutathione synthesis pathway genes and downregulation of the iron antiporter, suggesting iron addiction and highlighting ferroptosis as a potential therapeutic target. Overall, these findings suggest that while CCOC and ENOC arise from the same cell type, these histotypes likely originate from different cell states. This "cell state of origin" model may help to explain the presence of histologic and molecular cancer subtypes arising in other organs.


Genomic similarity between gastroesophageal junction and esophageal Barrett's adenocarcinomas.

  • Daysha Ferrer-Torres‎ et al.
  • Oncotarget‎
  • 2016‎

The current high mortality rate of esophageal adenocarcinoma (EAC) reflects frequent presentation at an advanced stage. Recent efforts utilizing fluorescent peptides have identified overexpressed cell surface targets for endoscopic detection of early stage Barrett's-derived EAC. Unfortunately, 30% of EAC patients present with gastroesophageal junction adenocarcinomas (GEJAC) and lack premalignant Barrett's metaplasia, limiting this early detection strategy. We compared mRNA profiles from 52 EACs (tubular EAC; tEAC) collected above the gastroesophageal junction with 70 GEJACs, 8 normal esophageal and 5 normal gastric mucosa samples. We also analyzed our previously published whole-exome sequencing data in a large cohort of these tumors. Principal component analysis, hierarchical clustering and survival-based analyses demonstrated that GEJAC and tEAC were highly similar, with only modest differences in expression and mutation profiles. The combined expression cohort allowed identification of 49 genes coding cell surface targets overexpressed in both GEJAC and tEAC. We confirmed that three of these candidates (CDH11, ICAM1 and CLDN3) were overexpressed in tumors when compared to normal esophagus, normal gastric and non-dysplastic Barrett's, and localized to the surface of tumor cells. Molecular profiling of tEAC and GEJAC tumors indicated extensive similarity and related molecular processes. Identified genes that encode cell surface proteins overexpressed in both Barrett's-derived EAC and those that arise without Barrett's metaplasia will allow simultaneous detection strategies.


In vivo photoacoustic tomography of EGFR overexpressed in hepatocellular carcinoma mouse xenograft.

  • Quan Zhou‎ et al.
  • Photoacoustics‎
  • 2016‎

EGFR is a promising cell surface target for in vivo imaging that is highly overexpressed in hepatocellular carcinoma (HCC), a common cancer worldwide. Peptides penetrate easily into tumors for deep imaging, and clear rapidly from the circulation to minimize background. We aim to demonstrate use of an EGFR specific peptide to detect HCC xenograft tumors in mice with photoacoustic imaging. Nude mice implanted with human HCC cells that overexpress EGFR were injected intravenously with Cy5.5-labeled EGFR and scrambled control peptides respectively. Photoacoustic images collected from 0 to 24 h. Photoacoustic signal peaked in tumors at 3 h post-injection. Images from 0 to 1.8 cm beneath the skin revealed increased target-to-background (T/B) ratio from tumors. The T/B ratio was significantly greater for the EGFR versus control peptide. Clearance of signal was observed by ∼24 h. EGFR overexpression was validated with immunofluorescence and immunohistochemistry. A peptide specific for EGFR delivered systemically can detect HCC xenograft tumors in vivo with photoacoustic imaging.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: