Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 20 papers out of 35 papers

Regeneration of rat corpora cavernosa tissue by transplantation of CD133+ cells derived from human bone marrow and placement of biodegradable gel sponge sheet.

  • Shogo Inoue‎ et al.
  • Asian journal of andrology‎
  • 2017‎

The objective is to develop an easier technique for regenerating corpora cavernosa tissue through transplantation of human bone marrow-derived CD133 + cells into a rat corpora cavernosa defect model. We excised 2 mm × 2 mm squares of the right corpora cavernosa of twenty-three 8-week-old male nude rats. Alginate gel sponge sheets supplemented with 1 × 10 4 CD133 + cells were then placed over the excised area of nine rats. Functional and histological evaluations were carried out 8 weeks later. The mean intracavernous pressure/mean arterial pressure ratio for the nine rats (0.34258 ± 0.0831) was significantly higher than that for eight rats with only the excision (0.0580 ± 0.0831, P = 0.0238) and similar to that for five rats for which the penis was exposed, and there was no excision (0.37228 ± 0.1051, P = 0.8266). Immunohistochemical analysis revealed that the nine fully treated rats had venous sinus-like structures and quantitative reverse transcription polymerase chain reaction analysis of extracts from their alginate gel sponge sheets revealed that the amounts of mRNA encoding the nerve growth factor (NGF), and vascular endothelial growth factor (VEGF) were significantly higher than those for rats treated with alginate gel sheets without cell supplementation (NGF: P = 0.0309; VEGF: P < 0.0001). These findings show that transplantation of CD133 + cells accelerates functional and histological recovery in the corpora cavernosa defect model.


Deficiency of Stomach-Type Claudin-18 in Mice Induces Gastric Tumor Formation Independent of H pylori Infection.

  • Koya Suzuki‎ et al.
  • Cellular and molecular gastroenterology and hepatology‎
  • 2019‎

Epithelial cells are joined by tight junctions (TJs) to form a cell sheet. In the stomach, epithelial cell sheet forms an essential barrier against gastric material, including gastric acid. Although the decreased expression of stomach-type claudin-18 (stCldn18), a TJ protein, is generally observed in human gastritis and gastric cancer, its pathological roles are not fully understood. We previously reported that mice lacking stCldn18 (stCldn18-/-) exhibit gastric acid leakage through TJs, which induces active gastritis at a young age. Here, we examined the gastric pathologies in mice after long-term stCldn18 deficiency.


NRD1, which encodes nardilysin protein, promotes esophageal cancer cell invasion through induction of MMP2 and MMP3 expression.

  • Naohiro Uraoka‎ et al.
  • Cancer science‎
  • 2014‎

Esophageal squamous cell carcinoma (ESCC) is one of the most common malignancies worldwide. In the present study, to identify novel prognostic markers or therapeutic targets for ESCC, we reviewed a list of genes with upregulated expression in ESCC compared with normal esophagus, as identified by our serial analysis of gene expression (SAGE) analysis. We focused on the NRD1 gene, which encodes the nardilysin protein. Quantitative reverse transcription-polymerase chain reaction (qRT-PCR) in 34 ESCC tissue samples revealed that mRNA expression of NRD1 was upregulated in 56% of ESCC tissue samples. Immunohistochemical analysis of nardilysin in 109 ESCC tissue samples demonstrated that 43 (39%) ESCC cases were positive for nardilysin. Nardilysin-positive ESCC cases were more advanced in terms of T classification (P = 0.0007), N classification (P = 0.0164), and tumor stage (P < 0.0001) than nardilysin-negative ESCC cases. Furthermore, nardilysin expression was significantly associated with poorer prognosis (P = 0.0258). Univariate and multivariate analyses revealed that nardilysin expression is an independent prognostic classifier of patients with ESCC. The invasiveness of NRD1-knockdown TE1 and TE5 esophageal cancer cell lines was less than that of the negative control siRNA-transfected cell lines. Expression of MMP2 and MMP3 mRNA was significantly lower in NRD1-knockdown TE5 cells than in negative control siRNA-transfected cells. These results suggest that nardilysin is involved in tumor progression, and is an independent prognostic classifier in patients with ESCC.


Combination therapy using molecular-targeted drugs modulates tumor microenvironment and impairs tumor growth in renal cell carcinoma.

  • Hiroyuki Kitano‎ et al.
  • Cancer medicine‎
  • 2017‎

Tumor growth and metastasis are determined not by cancer cells alone but also by a variety of stromal cells, various populations of which overexpress platelet-derived growth factor receptors (PDGF-Rs). In addition, activation of PI3K-AKT-mammalian target of rapamycin (mTOR) signaling is frequently observed in many cancer types as well. mTOR comprises a serine/threonine kinase that increases the production of proteins that stimulate key cellular processes such as cell growth and proliferation, cell metabolism, and angiogenesis. In this study, we investigated the impact of molecular-targeting agents including PDGF-R and mTOR inhibitors on the tumor stroma of human kidney cancer and examined the efficacy of combination therapy with these agents against this disease. Treatment with sunitinib did not suppress tumor growth, but significantly decreased stromal reactivity, microvessel density, and pericyte coverage of tumor microvessels in an orthotopic mouse model. In contrast, treatment with everolimus decreased tumor growth and microvessel density but not stromal reactivity. However, sunitinib and everolimus in combination reduced both the growth rate and stromal reaction. These findings suggest that target molecule-based inhibition of the cancer-stromal cell interaction appears promising as an effective antitumor therapy.


IRS1 regulation by Wnt/beta-catenin signaling and varied contribution of IRS1 to the neoplastic phenotype.

  • Guido T Bommer‎ et al.
  • The Journal of biological chemistry‎
  • 2010‎

Dysregulation of beta-catenin levels and localization and constitutive activation of beta-catenin/TCF (T cell factor)-regulated gene expression occur in many cancers, including the majority of colorectal carcinomas and a subset of ovarian endometrioid adenocarcinomas. Based on the results of microarray-based gene expression profiling we found the insulin receptor substrate 1 (IRS1) gene as one of the most highly up-regulated genes upon ectopic expression of a mutant, constitutively active form of beta-catenin in the rat kidney epithelial cell line RK3E. We demonstrate expression of IRS1 can be directly activated by beta-catenin, likely in part via beta-catenin/TCF binding to TCF consensus binding elements located in the first intron and downstream of the IRS1 transcriptional start site. Consistent with the proposal that beta-catenin is an important regulator of IRS1 expression in vivo, we observed that IRS1 is highly expressed in many cancers with constitutive stabilization of beta-catenin, such as colorectal carcinomas and ovarian endometrioid adenocarcinomas. Using a short hairpin RNA approach to abrogate IRS1 expression and function, we found that IRS1 function is required for efficient de novo neoplastic transformation by beta-catenin in RK3E cells. Our findings add to the growing body of data implicating IRS1 as a critical signaling component in cancer development and progression.


Synbiotics suppress colitis-induced tumorigenesis in a colon-specific cancer mouse model.

  • Yasufumi Saito‎ et al.
  • PloS one‎
  • 2019‎

Although synbiotics may be effective in maintaining remission of inflammatory bowel disease, their anticarcinogenic effects are still debated. To address this issue, we evaluated the effects of synbiotics, probiotics, and prebiotics on tumorigenesis using a CDX2P-Cre; Apc+/flox mouse model harboring a colon-specific Apc knock out, which develops adenoma and adenocarcinoma of the colon. Dextran sodium sulfate (DSS)-administration promoted colonic tumor development in CDX2P-Cre; Apc+/flox mice, and these tumors were associated with loss of Apc heterozygosity, as confirmed by observation of well-differentiated adenocarcinomas with β-catenin accumulation in tumor cell cytoplasm. Synbiotics-treatment suppressed dextran sodium sulfate-induced colitis in CDX2P-Cre; Apc+/flox mice, thereby reducing mortality, and inhibited tumorigenesis accelerated by DSS-administration. Conversely, neither probiotics nor prebiotics had any effect on inflammation and tumorigenesis. Lactobacillus casei and Bifidobacterium breve were detected in the fecal microbiota of probiotics-treated mice. Synbiotics-treatment suppressed DSS-induced expression of IL-6, STAT-3, COX-2, and TNF-α gene transcripts in normal colonic epithelium, indicating the possibility of suppressing tumor development. Importantly, these genes may be potential therapeutic targets in inflammation-associated colon cancer.


Aging accelerates while multiparity delays tumorigenesis in mouse models of high-grade serous carcinoma.

  • Xiaoman Hou‎ et al.
  • Gynecologic oncology‎
  • 2022‎

The "incessant ovulation" hypothesis links increased risk for tubo-ovarian high-grade serous carcinoma (HGSC) due to more ovulations and reduced risk conferred by pre-menopausal exposures like oral contraceptive use, multiparity, and breastfeeding. However, most women diagnosed with HGSC are postmenopausal, implying age is a major risk factor for HGSC. Our mouse model for HGSC, based on tamoxifen (TAM)-induced somatic inactivation of the Brca1, Trp53, Rb1, and Nf1 (BPRN) tumor suppressor genes in oviductal epithelium, recapitulates key genetic, histopathologic, and biological features of human HGSCs. We aimed to credential the model for future efforts to define biological and risk modification factors in HGSC pathogenesis.


MicroRNA-148a is downregulated in gastric cancer, targets MMP7, and indicates tumor invasiveness and poor prognosis.

  • Naoya Sakamoto‎ et al.
  • Cancer science‎
  • 2014‎

Gastric cancer (GC) develops through deregulation of gene expression and accumulation of epigenetic abnormalities, leading to tumor cell acquisition of malignant features. MicroRNAs (miRNAs) play a critical role in cancer development where they can act as oncogenes or oncosuppressors. To identify miRNAs that are associated with some clinicopathologic features of GC and/or participate in tumor progression, miRNA expression in 20 GC tissues and five corresponding non-neoplastic gastric mucosa was examined by miRNA microarray. Oligonucleotide array analysis was carried out for miRNA target prediction. The functions of candidate miRNAs and their target genes were also analyzed by quantitative RT-PCR, Western blotting, reporter gene assay, and cell invasion assay. Comparison of miRNA expression profiles revealed that downregulation of miR-148a was identified in most of the GC tissues. Downregulation of miR-148a was significantly correlated with an advanced clinical stage, lymph node metastasis, and poor clinical outcome. Custom oligonucleotide array analysis revealed that MMP7 expression was markedly downregulated in miR-148a-overexpressing GC cells; MMP7 was found to be a direct and functional target of miR-148a, participating in cell invasion. These results suggest that miR-148a contributes to the maintenance of homeostasis in normal stomach tissue and plays an important role in GC invasion by regulating MMP7 expression.


Gasdermin C Is Upregulated by Inactivation of Transforming Growth Factor β Receptor Type II in the Presence of Mutated Apc, Promoting Colorectal Cancer Proliferation.

  • Masashi Miguchi‎ et al.
  • PloS one‎
  • 2016‎

Mutations in TGFBR2, a component of the transforming growth factor (TGF)-β signaling pathway, occur in high-frequency microsatellite instability (MSI-H) colorectal cancer (CRC). In mouse models, Tgfbr2 inactivation in the intestinal epithelium accelerates the development of malignant intestinal tumors in combination with disruption of the Wnt-β-catenin pathway. However, no studies have further identified the genes influenced by TGFBR2 inactivation following disruption of the Wnt-β-catenin pathway. We previously described CDX2P-G19Cre;Apcflox/flox mice, which is stochastically null for Apc in the colon epithelium. In this study, we generated CDX2P-G19Cre;Apcflox/flox;Tgfbr2flox/flox mice, with simultaneous loss of Apc and Tgfbr2. These mice developed tumors, including adenocarcinoma in the proximal colon. We compared gene expression profiles between tumors of the two types of mice using microarray analysis. Our results showed that the expression of the murine homolog of GSDMC was significantly upregulated by 9.25-fold in tumors of CDX2P-G19Cre;Apcflox/flox;Tgfbr2flox/flox mice compared with those of CDX2P-G19Cre;Apcflox/flox mice. We then investigated the role of GSDMC in regulating CRC tumorigenesis. The silencing of GSDMC led to a significant reduction in the proliferation and tumorigenesis of CRC cell lines, whereas the overexpression of GSDMC enhanced cell proliferation. These results suggested that GSDMC functioned as an oncogene, promoting cell proliferation in colorectal carcinogenesis. In conclusion, combined inactivation of both Apc and Tgfbr2 in the colon epithelium of a CRC mouse model promoted development of adenocarcinoma in the proximal colon. Moreover, GSDMC was upregulated by TGFBR2 mutation in CRC and promoted tumor cell proliferation in CRC carcinogenesis, suggesting that GSDMC may be a promising therapeutic target.


Overexpression of claspin promotes docetaxel resistance and is associated with prostate-specific antigen recurrence in prostate cancer.

  • Takashi Babasaki‎ et al.
  • Cancer medicine‎
  • 2021‎

Although docetaxel (DTX) confers significant survival benefits in patients with castration-resistant prostate cancer (CRPC), resistance to DTX inevitably occurs. Therefore, clarifying the mechanisms of DTX resistance may improve survival in patients with CRPC. Claspin plays a pivotal role in DNA replication stress and damage responses and is an essential regulator for the S-phase checkpoint. CLSPN is an oncogenic gene that contributes to tumor proliferation in several human solid tumors. However, the clinical significance of claspin in prostate cancer (PCa) has not been examined. The present study aimed to elucidate the role of claspin and its relationship with DTX resistance in PCa. We immunohistochemically analyzed the expression of claspin in 89 PCa cases, of which 31 (35%) were positive for claspin. Claspin-positive cases were associated with higher Gleason score, venous invasion, and perineural invasion. Kaplan-Meier analysis showed that high claspin expression was related to poor prostate-specific antigen (PSA) relapse-free prognosis. In a public database, high CLSPN expression was associated with poor PSA relapse-free prognosis, Gleason score, T stage, lymph node metastasis, CRPC, and metastatic PCa. Claspin knockdown by siRNA decreased cell proliferation, upregulated DTX sensitivity, and suppressed the expression of Akt, Erk1/2, and CHK1 phosphorylation in DU145 and PC3 cell lines. Furthermore, claspin expression was much more upregulated in DTX-resistant DU145 (DU145-DR) than in parental DU145 cells. Claspin knockdown significantly upregulated the sensitivity to DTX in DU145-DR cells. These results suggest that claspin plays an important role in PCa tumor progression and DTX resistance.


ARID1A-mutated ovarian cancers depend on HDAC6 activity.

  • Benjamin G Bitler‎ et al.
  • Nature cell biology‎
  • 2017‎

ARID1A, encoding a subunit of the SWI/SNF chromatin-remodelling complex, is the most frequently mutated epigenetic regulator across all human cancers. ARID1A and TP53 mutations are typically mutually exclusive. Therapeutic approaches that correlate with this genetic characteristic remain to be explored. Here, we show that HDAC6 activity is essential in ARID1A-mutated ovarian cancers. Inhibition of HDAC6 activity using a clinically applicable small-molecule inhibitor significantly improved the survival of mice bearing ARID1A-mutated tumours. This correlated with the suppression of growth and dissemination of ARID1A-mutated, but not wild-type, tumours. The dependence on HDAC6 activity in ARID1A-mutated cells correlated with a direct transcriptional repression of HDAC6 by ARID1A. HDAC6 inhibition selectively promoted apoptosis of ARID1A-mutated cells. HDAC6 directly deacetylates Lys120 of p53, a pro-apoptotic post-translational modification. Thus, ARID1A mutation inactivates the apoptosis-promoting function of p53 by upregulating HDAC6. Together, these results indicate that pharmacological inhibition of HDAC6 is a therapeutic strategy for ARID1A-mutated cancers.


Gastric mucosa-associated lymphoid tissue lymphoma in conjunction with multiple lymphomatous polyposis in the context of Helicobacter pylori and Helicobacter suis superinfection.

  • Toshikatsu Naito‎ et al.
  • Clinical journal of gastroenterology‎
  • 2021‎

A 53-year-old woman visited a doctor and complained of chest discomfort after meals. Esophagogastroduodenoscopy showed multiple granular elevations in the gastric body. After biopsies from the elevations, she was diagnosed with mucosa-associated lymphoid tissue (MALT) lymphoma. Polymerase chain reaction also detected Helicobacter pylori and H. suis. Treatment to eradicate H. pylori and H. suis was successful. Endoscopic examination after the bacterial eradication treatment showed that multiple granular elevations remained in the gastric body; however, no lymphoma cells were found during histopathological examination. Thus, we reported a case of H. pylori-positive gastric MALT lymphoma with a unique morphology associated with H. suis superinfection.


DDX41 expression is associated with tumor necrosis in clear cell renal cell carcinoma and in cooperation with VHL loss leads to worse prognosis.

  • Kohei Kobatake‎ et al.
  • Urologic oncology‎
  • 2022‎

Histologic tumor necrosis (TN) is a well-established independent prognostic indicator in patients treated surgically for clear cell renal cell carcinoma (ccRCC). However, the precise mechanisms by which TN alters disease progression remain unknown. The DEAD-box protein DDX41, a member of a large family of helicases, has been characterized as a pattern recognition receptor against an array of double-stranded (ds)DNA produced from bacteria, dsDNA viruses, and nearby cells that have released dsDNA fragments through necrosis. We hypothesized that DDX41 expression may be upregulated in ccRCC with TN, leading to worse prognosis.


KIFC1 Inhibitor CW069 Induces Apoptosis and Reverses Resistance to Docetaxel in Prostate Cancer.

  • Yohei Sekino‎ et al.
  • Journal of clinical medicine‎
  • 2019‎

Kinesin family member C1 (KIFC1) is a minus end-directed motor protein that plays an essential role in centrosome clustering. Previously, we reported that KIFC1 is involved in cancer progression in prostate cancer (PCa). We designed this study to assess the involvement of KIFC1 in docetaxel (DTX) resistance in PCa and examined the effect of KIFC1 on DTX resistance. We also analyzed the possible role of a KIFC1 inhibitor (CW069) in PCa. We used DTX-resistant PCa cell lines in DU145 and C4-2 cells to analyze the effect of KIFC1 on DTX resistance in PCa. Western blotting showed that KIFC1 expression was higher in the DTX-resistant cell lines than in the parental cell lines. Downregulation of KIFC1 re-sensitized the DTX-resistant cell lines to DTX treatment. CW069 treatment suppressed cell viability in both parental and DTX-resistant cell lines. DTX alone had little effect on cell viability in the DTX-resistant cells. However, the combination of DTX and CW069 significantly reduced cell viability in the DTX-resistant cells, indicating that CW069 re-sensitized the DTX-resistant cell lines to DTX treatment. These results suggest that a combination of CW069 and DTX could be a potential strategy to overcome DTX resistance.


Uc.416 + A promotes epithelial-to-mesenchymal transition through miR-153 in renal cell carcinoma.

  • Yohei Sekino‎ et al.
  • BMC cancer‎
  • 2018‎

The transcribed ultraconserved regions (T-UCRs) are a novel class of non-coding RNAs that are absolutely conserved across species and are involved in carcinogenesis in some cancers. However, the expression and biological role of T-UCRs in renal cell carcinoma (RCC) remain poorly understood. This study aimed to examine the expression and functional role of Uc.416 + A and analyze the association between Uc.416 + A and epithelial-to-mesenchymal transition in RCC.


Chlorinated Water Modulates the Development of Colorectal Tumors with Chromosomal Instability and Gut Microbiota in Apc-Deficient Mice.

  • Tatsunari Sasada‎ et al.
  • PloS one‎
  • 2015‎

The gastrointestinal tract is continuously exposed to a variety of chemicals and commensal bacteria. Recent studies have shown that changes in gut microbial populations caused by chlorine or other chemicals in the drinking water influence the development of human colorectal cancer, although the mechanism of tumorigenesis in the gut epithelium is obfuscated by the diversity of microflora and complexity of the tumor microenvironment. In this regard, mouse models that recapitulate human colorectal cancer are an invaluable tool. In this study, we used two conditional adenomatous polyposis coli (Apc) knockout mouse models to investigate the effect of chlorinated water on tumorigenesis in the digestive tract. Mice with colon-specific carcinoma--caused by either chromosomal (CDX2P 9.5-NLS Cre;Apc(+/flox), abbreviated to CPC;Apc) or microsatellite (CDX2P9.5-G19Cre;Apc(flox/flox) and CDX2P9.5-G22Cre;Apc(flox/flox)) instability, respectively--were administered chlorinated (10.0 mg/L chlorine) or tap (0.7 mg/L chlorine) water and evaluated for colon polyp formation. In CPC;Apc mice given chlorinated drinking water, tumors tended to develop in the colon, whereas in those that drank tap water, tumors were mostly observed in the small intestine. There was no difference in the rate of tumor formation of CDX2P9.5-G19Cre;Apc(flox/flox) and CDX2P9.5-G22Cre;Apc(flox/flox) mice consuming chlorinated as compared to tap water, suggesting that microsatellite instability in the Apc gene does not significantly affect tumorigenesis. Chlorinated water altered the enteric environment by reducing the fecal populations of the obligatory anaerobes Clostridium perfringens and C. difficile, as well as species belonging to the Atopobium cluster, including Enterobacteriaceae and Staphylococcus sp., which was associated with colon tumorigenesis in CPC;Apc mice. These results suggest that differences in tumorigenesis among CPC;Apc mice consuming chlorinated versus tap water may be due to differences in gastrointestinal commensal populations.


Regulation of multidrug resistance 1 expression by CDX2 in ovarian mucinous adenocarcinoma.

  • Iemasa Koh‎ et al.
  • Cancer medicine‎
  • 2016‎

Epithelial ovarian cancer is an aggressive gynecological malignancy with a high mortality rate. Resistance against chemotherapeutic agents often develops in ovarian cancer patients, contributing to high recurrence rates. The multidrug resistance 1 (MDR1/ABCB1) gene encodes P-glycoprotein, which affects the pharmacokinetic properties of anticancer agents. We previously reported that the Caudal-related homeobox transcription factor CDX2 transcriptionally regulates MDR1 expression in colorectal cancer. CDX2 is a factor that influences cancer cell differentiation, malignancy, and cancer progression. We hypothesized that profiling of CDX2 and MDR1 expression could be an effective strategy for predicting anticancer drug resistance. We studied the expression of these factors in clinical samples from ovarian cancer patients. We found that endogenous MDR1 expression was positively associated with CDX2 expression in ovarian mucinous adenocarcinoma. Using ovarian mucinous adenocarcinoma cell lines, we also observed decreased MDR1 expression following inhibition of CDX2 by RNA interference. In addition, CDX2 overexpression in MN-1 cells, which display low endogenous CDX2, resulted in upregulation of MDR1 expression. CDX2 induced MDR1-dependent resistance to vincristine and paclitaxel, which was reversed by treatment with the MDR1-specific inhibitor verapamil. Our findings show that CDX2 promotes upregulation of MDR1 expression, leading to drug resistance in ovarian mucinous adenocarcinoma. Therefore, our study demonstrates the potential of novel chemotherapy regimens based on CDX2 status and MDR1 expression in ovarian mucinous adenocarcinoma.


Two Distinct Categories of Focal Deletions in Cancer Genomes.

  • Megha Rajaram‎ et al.
  • PloS one‎
  • 2013‎

One of the key questions about genomic alterations in cancer is whether they are functional in the sense of contributing to the selective advantage of tumor cells. The frequency with which an alteration occurs might reflect its ability to increase cancer cell growth, or alternatively, enhanced instability of a locus may increase the frequency with which it is found to be aberrant in tumors, regardless of oncogenic impact. Here we've addressed this on a genome-wide scale for cancer-associated focal deletions, which are known to pinpoint both tumor suppressor genes (tumor suppressors) and unstable loci. Based on DNA copy number analysis of over one-thousand human cancers representing ten different tumor types, we observed five loci with focal deletion frequencies above 5%, including the A2BP1 gene at 16p13.3 and the MACROD2 gene at 20p12.1. However, neither RNA expression nor functional studies support a tumor suppressor role for either gene. Further analyses suggest instead that these are sites of increased genomic instability and that they resemble common fragile sites (CFS). Genome-wide analysis revealed properties of CFS-like recurrent deletions that distinguish them from deletions affecting tumor suppressor genes, including their isolation at specific loci away from other genomic deletion sites, a considerably smaller deletion size, and dispersal throughout the affected locus rather than assembly at a common site of overlap. Additionally, CFS-like deletions have less impact on gene expression and are enriched in cell lines compared to primary tumors. We show that loci affected by CFS-like deletions are often distinct from known common fragile sites. Indeed, we find that each tumor tissue type has its own spectrum of CFS-like deletions, and that colon cancers have many more CFS-like deletions than other tumor types. We present simple rules that can pinpoint focal deletions that are not CFS-like and more likely to affect functional tumor suppressors.


Trp53 null and R270H mutant alleles have comparable effects in regulating invasion, metastasis, and gene expression in mouse colon tumorigenesis.

  • Jinyu Tang‎ et al.
  • Laboratory investigation; a journal of technical methods and pathology‎
  • 2019‎

Somatic APC (adenomatous polyposis coli), TP53, KRAS mutations are present in roughly 80%, 60%, and 40%, respectively, of human colorectal cancers (CRCs). Most TP53 mutant alleles in CRCs encode missense mutant proteins with loss-of-function (LOF) of p53's transcriptional activity and dominant negative (DN) effects on wild-type p53 function. Missense mutant p53 proteins have been reported to exert gain-of-function (GOF) effects in cancer. We compared the phenotypic effects of the common human cancer-associated TP53 R273H missense mutation to p53 null status in a genetically engineered mouse CRC model. Inactivation of one allele of Apc together with activation of a Kras mutant allele in mouse colon epithelium instigated development of serrated and hyperplastic epithelium and adenomas (AK mice). Addition of a Trp53R270H or Trp53null mutant allele to the model (AKP mice) led to markedly shortened survival and increased tumor burden relative to that of AK mice, including adenocarcinomas in AKP mice. Comparable life span and tumor burden were seen in AKP mice carrying Trp53R270H or Trp53null alleles, along with similar frequencies of spontaneous metastasis to lymph nodes, lung, and liver. The fraction of adenocarcinomas with submucosa or deeper invasion was higher in AKP270/fl mice than in AKPfl/fl mice, but the incidence of adenocarcinomas per mouse did not differ significantly between AKPfl/fl and AKP270/fl mice. In line with their comparable biological behaviors, mouse primary tumors and tumor-derived organoids with the Trp53R270H or Trp53null alleles had highly similar gene expression profiles. Human CRCs with TP53 R273 missense mutant or null alleles also had essentially homogeneous gene expression patterns. Our findings indicate the R270H/R273H p53 mutant protein does not manifest definite GOF biological effects in mouse and human CRCs, suggesting possible GOF effects of mutant p53 in cancer phenotypes are likely allele-specific and/or context-dependent.


TDO2 overexpression correlates with poor prognosis, cancer stemness, and resistance to cetuximab in bladder cancer.

  • Quoc Thang Pham‎ et al.
  • Cancer reports (Hoboken, N.J.)‎
  • 2021‎

Bladder cancer (BC) is the 10th most common cancer in the world. BC with muscle invasion results in a poor prognosis and is usually fatal. Cancer cell metabolism has an essential role in the development and progression of tumors. Expression of tryptophan 2,3-dioxygenase (TDO2) is associated with tumor progression and worse survival in some other cancers. However, no studies have been performed to uncover the biofunctional roles of TDO2 in BC.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: