Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 20 papers out of 182 papers

Expression of aurora kinase A correlates with the Wnt-modulator RACGAP1 in gastric cancer.

  • Jan Bornschein‎ et al.
  • Cancer medicine‎
  • 2016‎

Canonical Wnt signaling is involved in gastric carcinogenesis. The aim of this study was to identify the link between Wnt signaling and aurora kinase A (AURKA), a target for the treatment of gastrointestinal cancers. Publicly available microarray data were used to identify phenotype-specific protein-protein interaction (PPI) subnetworks. The in silico analysis revealed a gastric cancer-specific PPI subnetwork consisting of 2745 proteins and 50,935 interactions. We focused on the link of AURKA to a Wnt-specific interaction module consisting of 92 proteins. There was a direct association of AURKA with Rac GTPase-activating protein 1 (RACGAP1), as well as with CTNBB1 (β-catenin) and CDKN1A as second-order interactors. Differential expression analysis revealed a significant downregulation of both AURKA and RACGAP1 in gastric cancer compared to noncancer controls. Biopsies from a prospective cohort of 56 patients with gastric cancer (32 intestinal type, 24 diffuse type) and 20 noncancer controls were used for validation of the identified targets. The RT-PCR data confirmed a strong correlation of AURKA and RACGAP1 gene expression both in the tumor, the tumor-adjacent and the tumor-distant mucosa. RACGAP1 in the tumor was also associated with CTNBB1 expression, and inversely associated with CDKN1A gene expression. Immunohistochemistry confirmed expression of the RACGAP1 protein in gastric cancer and the tumor-adjacent mucosa. RACGAP1 expression was not associated with tumor stage, grading, Lauren type, Helicobacter pylori infection, or age. In conclusion, AURKA is directly associated with the expression of RACGAP1, a modulator of the canonical Wnt signaling pathway.


Genetically Induced Retrograde Amnesia of Associative Memories After Neuroplastin Ablation.

  • Soumee Bhattacharya‎ et al.
  • Biological psychiatry‎
  • 2017‎

Neuroplastin cell recognition molecules have been implicated in synaptic plasticity. Polymorphisms in the regulatory region of the human neuroplastin gene (NPTN) are correlated with cortical thickness and intellectual abilities in adolescents and in individuals with schizophrenia.


Inflammatory response in serrated precursor lesions of the colon classified according to WHO entities, clinical parameters and phenotype-genotype correlation.

  • Tilman T Rau‎ et al.
  • The journal of pathology. Clinical research‎
  • 2016‎

Studies on traditional serrated adenoma (TSA) and sessile serrated adenoma with dysplasia (SSA-D) are rare due to the low frequency of these lesions, which are well defined by the latest WHO classification. However, introducing new morphological criteria such as intra-epithelial lymphocytes (IELs) might facilitate colorectal polyp diagnoses. Additionally, the phenotype-genotype correlation needs to be updated as the terminology has repeatedly changed. This study analysed 516 polyps, consisting of 118 classical adenomas (CAD), 116 hyperplastic polyps (HPP), 179 SSAs, 41 SSA-Ds, and 62 TSAs. The lesions were analysed in relation to the patients' clinical parameters including gender, age, localisation, and size. The inflammatory background of the polyps was quantified and BRAF and KRAS mutations as well as MLH1 and CDKN2A promoter methylation were assessed. In multivariate analyses, an increase in IELs was an independent and robust new criterion for the diagnosis of SSA-D (p < 0.001). Superficial erosions and acute neutrophil granulocytes led to reactive changes potentially resembling dysplasia. KRAS and BRAF mutations were associated with CAD/TSA and HPP/SSA, respectively. However, almost half of TSAs had a BRAF mutation and were KRAS wild type. CDKN2A seems to precede MLH1 hyper-methylation within the serrated carcinogenesis model. The genotyping of WHO-based entities - and especially SSA - has sharpened in comparison to previously published data. TSAs can be sub-grouped according to their mutation status. Of note, the higher number of IELs in SSA-D reflects their close relationship to colorectal cancers with micro-satellite instability. Therefore, IELs might represent a new diagnostic tool for SSA-D.


Characterisation of worldwide Helicobacter pylori strains reveals genetic conservation and essentiality of serine protease HtrA.

  • Nicole Tegtmeyer‎ et al.
  • Molecular microbiology‎
  • 2016‎

HtrA proteases and chaperones exhibit important roles in periplasmic protein quality control and stress responses. The genetic inactivation of htrA has been described for many bacterial pathogens. However, in some cases such as the gastric pathogen Helicobacter pylori, HtrA is secreted where it cleaves the tumour-suppressor E-cadherin interfering with gastric disease development, but the generation of htrA mutants is still lacking. Here, we show that the htrA gene locus is highly conserved in worldwide strains. HtrA presence was confirmed in 992 H. pylori isolates in gastric biopsy material from infected patients. Differential RNA-sequencing (dRNA-seq) indicated that htrA is encoded in an operon with two subsequent genes, HP1020 and HP1021. Genetic mutagenesis and complementation studies revealed that HP1020 and HP1021, but not htrA, can be mutated. In addition, we demonstrate that suppression of HtrA proteolytic activity with a newly developed inhibitor is sufficient to effectively kill H. pylori, but not other bacteria. We show that Helicobacter htrA is an essential bifunctional gene with crucial intracellular and extracellular functions. Thus, we describe here the first microbe in which htrA is an indispensable gene, a situation unique in the bacterial kingdom. HtrA can therefore be considered a promising new target for anti-bacterial therapy.


Major host factors involved in epithelial cell invasion of Campylobacter jejuni: role of fibronectin, integrin beta1, FAK, Tiam-1, and DOCK180 in activating Rho GTPase Rac1.

  • Manja Boehm‎ et al.
  • Frontiers in cellular and infection microbiology‎
  • 2011‎

Host cell entry by the food-borne pathogen Campylobacter jejuni has been reported as one of the primary reasons of tissue damage in infected humans, however, molecular invasion mechanisms and cellular factors involved in this process are widely unclear. Here we used knockout cell lines derived from fibronectin(-/-), integrin beta1(-/-), and focal adhesion kinase (FAK)(-/-) deficient mice and corresponding wild-type (WT) controls, to study C. jejuni-induced signaling cascades involved in the bacterial invasion process. Using high resolution scanning electron microscopy, GTPase pull-downs, G-LISA, and gentamicin protection assays we found that each of these host cell factors is indeed required for activation of the small Rho GTPase member Rac1 and maximal host cell invasion of this pathogen. Interestingly, membrane ruffling, tight engulfment of bacteria and invasion were only seen during infection of WT control cells, but not in fibronectin(-/-), integrin beta1(-/-), and FAK(-/-) knockout cell lines. We also demonstrate that C. jejuni activates FAK autophosphorylation activity at Y-397 and phosphorylation of Y-925, which is required for stimulating two downstream guanine exchange factors, DOCK180 and Tiam-1, which are upstream of Rac1. Small interfering (si) RNA studies further show that DOCK180 and Tiam-1 act cooperatively to trigger Rac1 activation and C. jejuni invasion. Moreover, mutagenesis data indicate that the bacterial fibronectin-binding protein CadF and the intact flagellum are involved in Rho GTPase activation and host cell invasion. Collectively, our results suggest that C. jejuni infection of host epithelial target cells hijacks a major fibronectin → integrin beta1 → FAK → DOCK180/Tiam-1 signaling cascade, which has a crucial role for Rac1 GTPase activity and bacterial entry into host target cells.


A specific A/T polymorphism in Western tyrosine phosphorylation B-motifs regulates Helicobacter pylori CagA epithelial cell interactions.

  • Xue-Song Zhang‎ et al.
  • PLoS pathogens‎
  • 2015‎

Helicobacter pylori persistently colonizes the human stomach, with mixed roles in human health. The CagA protein, a key host-interaction factor, is translocated by a type IV secretion system into host epithelial cells, where its EPIYA tyrosine phosphorylation motifs (TPMs) are recognized by host cell kinases, leading to multiple host cell signaling cascades. The CagA TPMs have been described as type A, B, C or D, each with a specific conserved amino acid sequence surrounding EPIYA. Database searching revealed strong non-random distribution of the B-motifs (including EPIYA and EPIYT) in Western H. pylori isolates. In silico analysis of Western H. pylori CagA sequences provided evidence that the EPIYT B-TPMs are significantly less associated with gastric cancer than the EPIYA B-TPMs. By generating and using a phosphorylated CagA B-TPM-specific antibody, we demonstrated the phosphorylated state of the CagA B-TPM EPIYT during H. pylori co-culture with host cells. We also showed that within host cells, CagA interaction with phosphoinositol 3-kinase (PI3-kinase) was B-TPM tyrosine-phosphorylation-dependent, and the recombinant CagA with EPIYT B-TPM had higher affinity to PI3-kinase and enhanced induction of AKT than the isogenic CagA with EPIYA B-TPM. Structural modeling of the CagA B-TPM motif bound to PI3-kinase indicated that the threonine residue at the pY+1 position forms a side-chain hydrogen bond to N-417 of PI3-kinase, which cannot be formed by alanine. During co-culture with AGS cells, an H. pylori strain with a CagA EPIYT B-TPM had significantly attenuated induction of interleukin-8 and hummingbird phenotype, compared to the isogenic strain with B-TPM EPIYA. These results suggest that the A/T polymorphisms could regulate CagA activity through interfering with host signaling pathways related to carcinogenesis, thus influencing cancer risk.


Computational Studies on the Inhibitor Selectivity of Human JAMM Deubiquitinylases Rpn11 and CSN5.

  • Vikash Kumar‎ et al.
  • Frontiers in chemistry‎
  • 2018‎

Deubiquitinylases (DUBs) are highly specialized enzymes which are responsible for removal of covalently attached ubiquitin(s) from the targeted proteins. DUBs play an important role in maintaining the protein homeodynamics. Recently, DUBs have emerged as novel therapeutic targets in cancer, inflammation, diabetes, and neurodegeneration. Among the different families of DUBs, the metalloprotease group or JAB1/MOV34/MPR1 (JAMMs) proteases are unique in terms of catalytic mechanism. JAMMs exhibit a Zn2+-dependent deubiquitinylase activity. Within the JAMM family, deubiquitinylases Rpn11 and CSN5 are constituents of large bimolecular complexes, namely the 26S proteasome and COP9 signalosome (CSN), respectively. Rpn11 and CSN5 are potential drug targets in cancer and selective inhibitors of both proteins have been reported in the literature. However, the selectivity of JAMM inhibitors (capzimin for RPN11 and CSN5i-3 for CSN5) has not been structurally resolved yet. In the present work, we have explored the binding modes of capzimin and CSN5i-3 and rationalize their selectivity for Rpn11 and CSN5 targets. We found that capzimin interacts with the active site Zn+2 of Rpn11 in a bidentate manner and also interacts with the residues in the distal ubiquitin binding site. MD simulations studies and binding energy analysis revealed that the selective binding of the inhibitors can be only explained by the consideration of larger heterodimeric complexes of Rpn11 (Rpn8-Rpn11) and CSN5 (CSN5-CSN6). Simulation of these protein-protein complexes is necessary to avoid unrealistic large conformational changes. The selective binding of inhibitors is mainly governed by residues in the distal ubiquitin binding site. This study demonstrates that selective inhibitor binding design for Rpn11 and CSN5 JAMM proteases requires consideration of heterodimeric protein-protein target structures.


Memory enhancement by ferulic acid ester across species.

  • Birgit Michels‎ et al.
  • Science advances‎
  • 2018‎

Cognitive impairments can be devastating for quality of life, and thus, preventing or counteracting them is of great value. To this end, the present study exploits the potential of the plant Rhodiola rosea and identifies the constituent ferulic acid eicosyl ester [icosyl-(2E)-3-(4-hydroxy-3-methoxyphenyl)-prop-2-enoate (FAE-20)] as a memory enhancer. We show that food supplementation with dried root material from R. rosea dose-dependently improves odor-taste reward associative memory scores in larval Drosophila and prevents the age-related decline of this appetitive memory in adult flies. Task-relevant sensorimotor faculties remain unaltered. From a parallel approach, a list of candidate compounds has been derived, including R. rosea-derived FAE-20. Here, we show that both R. rosea-derived FAE-20 and synthetic FAE-20 are effective as memory enhancers in larval Drosophila. Synthetic FAE-20 also partially compensates for age-related memory decline in adult flies, as well as genetically induced early-onset loss of memory function in young flies. Furthermore, it increases excitability in mouse hippocampal CA1 neurons, leads to more stable context-shock aversive associative memory in young adult (3-month-old) mice, and increases memory scores in old (>2-year-old) mice. Given these effects, and given the utility of R. rosea-the plant from which we discovered FAE-20-as a memory enhancer, these results may hold potential for clinical applications.


Campylobacter jejuni enters gut epithelial cells and impairs intestinal barrier function through cleavage of occludin by serine protease HtrA.

  • Aileen Harrer‎ et al.
  • Gut pathogens‎
  • 2019‎

Campylobacter jejuni secretes HtrA (high temperature requirement protein A), a serine protease that is involved in virulence. Here, we investigated the interaction of HtrA with the host protein occludin, a tight junction strand component. Immunofluorescence studies demonstrated that infection of polarized intestinal Caco-2 cells with C. jejuni strain 81-176 resulted in a redistribution of occludin away from the tight junctions into the cytoplasm, an effect that was also observed in human biopsies during acute campylobacteriosis. Occludin knockout Caco-2 cells were generated by CRISPR/Cas9 technology. Inactivation of this gene affected the polarization of the cells in monolayers and transepithelial electrical resistance (TER) was reduced, compared to wild-type Caco-2 cells. Although tight junctions were still being formed, occludin deficiency resulted in a slight decrease of the tight junction plaque protein ZO-1, which was redistributed off the tight junction into the lateral plasma membrane. Adherence of C. jejuni to Caco-2 cell monolayers was similar between the occludin knockout compared to wild-type cells, but invasion was enhanced, indicating that deletion of occludin allowed larger numbers of bacteria to pass the tight junctions and to reach basal membranes to target the fibronectin receptor followed by cell entry. Finally, we discovered that purified C. jejuni HtrA cleaves recombinant occludin in vitro to release a 37 kDa carboxy-terminal fragment. The same cleavage fragment was observed in Western blots upon infection of polarized Caco-2 cells with wild-type C. jejuni, but not with isogenic ΔhtrA mutants. HtrA cleavage was mapped to the second extracellular loop of occludin, and a putative cleavage site was identified. In conclusion, HtrA functions as a secreted protease targeting the tight junctions, which enables the bacteria by cleaving occludin and subcellular redistribution of other tight junction proteins to transmigrate using a paracellular mechanism and subsequently invade epithelial cells.


In silico proteomic and phylogenetic analysis of the outer membrane protein repertoire of gastric Helicobacter species.

  • Eva Bauwens‎ et al.
  • Scientific reports‎
  • 2018‎

Helicobacter (H.) pylori is an important risk factor for gastric malignancies worldwide. Its outer membrane proteome takes an important role in colonization of the human gastric mucosa. However, in zoonotic non-H. pylori helicobacters (NHPHs) also associated with human gastric disease, the composition of the outer membrane (OM) proteome and its relative contribution to disease remain largely unknown. By means of a comprehensive survey of the diversity and distribution of predicted outer membrane proteins (OMPs) identified in all known gastric Helicobacter species with fully annotated genome sequences, we found genus- and species-specific families known or thought to be implicated in virulence. Hop adhesins, part of the Helicobacter-specific family 13 (Hop, Hor and Hom) were restricted to the gastric species H. pylori, H. cetorum and H. acinonychis. Hof proteins (family 33) were putative adhesins with predicted Occ- or MOMP-family like 18-stranded β-barrels. They were found to be widespread amongst all gastric Helicobacter species only sporadically detected in enterohepatic Helicobacter species. These latter are other members within the genus Helicobacter, although ecologically and genetically distinct. LpxR, a lipopolysaccharide remodeling factor, was also detected in all gastric Helicobacter species but lacking as well from the enterohepatic species H. cinaedi, H. equorum and H. hepaticus. In conclusion, our systemic survey of Helicobacter OMPs points to species and infection-site specific members that are interesting candidates for future virulence and colonization studies.


Amino-Terminal Processing of Helicobacter pylori Serine Protease HtrA: Role in Oligomerization and Activity Regulation.

  • Nicole Albrecht‎ et al.
  • Frontiers in microbiology‎
  • 2018‎

The HtrA family of serine proteases is found in most bacteria, and plays an essential role in the virulence of the gastric pathogen Helicobacter pylori. Secreted H. pylori HtrA (HtrA Hp ) cleaves various junctional proteins such as E-cadherin disrupting the epithelial barrier, which is crucial for bacterial transmigration across the polarized epithelium. Recent studies indicated the presence of two characteristic HtrA Hp forms of 55 and 52 kDa (termed p55 and p52, respectively), in worldwide strains. In addition, p55 and p52 were produced by recombinant HtrA Hp , indicating auto-cleavage. However, the cleavage sites and their functional importance are yet unclear. Here, we determined the amino-terminal ends of p55 and p52 by Edman sequencing. Two proteolytic cleavage sites were identified (H46/D47 and K50/D51). Remarkably, the cleavage site sequences are conserved in HtrA Hp from worldwide isolates, but not in other Gram-negative pathogens, suggesting a highly specific assignment in H. pylori. We analyzed the role of the amino-terminal cleavage sites on activity, secretion and function of HtrA Hp . Three-dimensional modeling suggested a trimeric structure and a role of amino-terminal processing in oligomerization and regulation of proteolytic activity of HtrA Hp . Furthermore, point and deletion mutants of these processing sites were generated in the recently reported Campylobacter jejuni ΔhtrA/htrAHp genetic complementation system and the minimal sequence requirements for processing were determined. Polarized Caco-2 epithelial cells were infected with these strains and analyzed by immunofluorescence microscopy. The results indicated that HtrA Hp processing strongly affected the ability of the protease to disrupt the E-cadherin-based cell-to-cell junctions. Casein zymography confirmed that the amino-terminal region is required for maintaining the proteolytic activity of HtrA Hp . Furthermore, we demonstrated that this cleavage influences the secretion of HtrA Hp in the extracellular space as an important prerequisite for its virulence activity. Taken together, our data demonstrate that amino-terminal cleavage of HtrA Hp is conserved in this pathogen and affects oligomerization and thus, secretion and regulatory activities, suggesting an important role in the pathogenesis of H. pylori.


Evidence for PTGER4, PSCA, and MBOAT7 as risk genes for gastric cancer on the genome and transcriptome level.

  • Sophie K M Heinrichs‎ et al.
  • Cancer medicine‎
  • 2018‎

Genetic associations between variants on chromosome 5p13 and 8q24 and gastric cancer (GC) have been previously reported in the Asian population. We aimed to replicate these findings and to characterize the associations at the genome and transcriptome level. We performed a fine-mapping association study in 1926 GC patients and 2012 controls of European descent using high dense SNP marker sets on both chromosomal regions. Next, we performed expression quantitative trait locus (eQTL) analyses using gastric transcriptome data from 143 individuals focusing on the GC associated variants. On chromosome 5p13 the strongest association was observed at rs6872282 (P = 2.53 × 10-04 ) and on chromosome 8q24 at rs2585176 (P = 1.09 × 10-09 ). On chromosome 5p13 we found cis-eQTL effects with an upregulation of PTGER4 expression in GC risk allele carrier (P = 9.27 × 10-11 ). On chromosome 8q24 we observed cis-eQTL effects with an upregulation of PSCA expression in GC risk allele carrier (P = 2.17 × 10-47 ). In addition, we found trans-eQTL effects for the same variants on 8q24 with a downregulation of MBOAT7 expression in GC risk allele carrier (P = 3.11 × 10-09 ). In summary, we confirmed and refined the previously reported GC associations at both chromosomal regions. Our data point to shared etiological factors between Asians and Europeans. Furthermore, our data imply an upregulated expression of PTGER4 and PSCA as well as a downregulated expression of MBOAT7 in gastric tissue as risk-conferring GC pathomechanisms.


Association Between Gut Microbiota and Helicobacter pylori-Related Gastric Lesions in a High-Risk Population of Gastric Cancer.

  • Juan-Juan Gao‎ et al.
  • Frontiers in cellular and infection microbiology‎
  • 2018‎

Eradication of Helicobacter pylori has been found to be effective for gastric cancer prevention, but uncertainties remain about the possible adverse consequences such as the potential microbial dysbiosis. In our study, we investigated the association between gut microbiota and H. pylori-related gastric lesions in 47 subjects by deep sequencing of microbial 16S ribosomal RNA (rRNA) gene in fecal samples. The dominant phyla in fecal samples were Bacteroidetes, Firmicutes, and Proteobacteria with average relative abundances of 54.77, 31.37 and 12.91%, respectively. Microbial diversity analysis showed that observed species and Shannon index were increased in subjects with past or current H. pylori infection compared with negative subjects. As for the differential bacteria, the average relative abundance of Bacteroidetes was found to significantly decrease from H. pylori negative (66.16%) to past infection group (33.01%, p = 0.007), as well as from normal (76.49%) to gastritis (56.04%) and metaplasia subjects (46.83%, p = 0.027). For Firmicutes and Proteobacteria, the average relative abundances showed elevated trends in the past H. pylori infection group (47.11, 20.53%) compared to negative group (23.44, 9.05%, p = 0.068 and 0.246, respectively), and similar increased trends were also found from normal (18.23, 5.05%) to gastritis (35.31, 7.23%, p = 0.016 and 0.294, respectively) or metaplasia subjects (32.33, 20.07%, both p < 0.05). These findings suggest that the alterations of fecal microbiota, especially the dominant phyla of Bacteroidetes, Firmicutes and Proteobacteria, may be involved in the process of H. pylori-related gastric lesion progression and provide hints for future evaluation of microbial changes after H. pylori eradication.


The role of serine protease HtrA in acute ulcerative enterocolitis and extra-intestinal immune responses during Campylobacter jejuni infection of gnotobiotic IL-10 deficient mice.

  • Markus M Heimesaat‎ et al.
  • Frontiers in cellular and infection microbiology‎
  • 2014‎

Campylobacter jejuni infections have a high prevalence worldwide and represent a significant socioeconomic burden. C. jejuni can cross the intestinal epithelial barrier as visualized in biopsies derived from human patients and animal models, however, the underlying molecular mechanisms and associated immunopathology are still not well understood. We have recently shown that the secreted serine protease HtrA (high temperature requirement A) plays a key role in C. jejuni cellular invasion and transmigration across polarized epithelial cells in vitro. In the present in vivo study we investigated the role of HtrA during C. jejuni infection of mice. We used the gnotobiotic IL-10(-/-) mouse model to study campylobacteriosis following peroral infection with the C. jejuni wild-type (WT) strain NCTC11168 and the isogenic, non-polar NCTC11168ΔhtrA deletion mutant. Six days post infection (p.i.) with either strain mice harbored comparable intestinal C. jejuni loads, whereas ulcerative enterocolitis was less pronounced in mice infected with the ΔhtrA mutant strain. Moreover, ΔhtrA mutant infected mice displayed lower apoptotic cell numbers in the large intestinal mucosa, less colonic accumulation of neutrophils, macrophages and monocytes, lower large intestinal nitric oxide, IFN-γ, and IL-6 as well as lower TNF-α and IL-6 serum concentrations as compared to WT strain infected mice at day 6 p.i. Notably, immunopathological responses were not restricted to the intestinal tract given that liver and kidneys exhibited mild histopathological changes 6 days p.i. with either C. jejuni strain. We also found that hepatic and renal nitric oxide levels or renal TNF-α concentrations were lower in the ΔhtrA mutant as compared to WT strain infected mice. In conclusion, we show here that the C. jejuni HtrA protein plays a pivotal role in inducing host cell apoptosis and immunopathology during murine campylobacteriosis in the gut in vivo.


Neuroplastin deletion in glutamatergic neurons impairs selective brain functions and calcium regulation: implication for cognitive deterioration.

  • Rodrigo Herrera-Molina‎ et al.
  • Scientific reports‎
  • 2017‎

The cell adhesion molecule neuroplastin (Np) is a novel candidate to influence human intelligence. Np-deficient mice display complex cognitive deficits and reduced levels of Plasma Membrane Ca2+ ATPases (PMCAs), an essential regulator of the intracellular Ca2+ concentration ([iCa2+]) and neuronal activity. We show abundant expression and conserved cellular and molecular features of Np in glutamatergic neurons in human hippocampal-cortical pathways as characterized for the rodent brain. In Nptn lox/loxEmx1Cre mice, glutamatergic neuron-selective Np ablation resulted in behavioral deficits indicating hippocampal, striatal, and sensorimotor dysfunction paralleled by highly altered activities in hippocampal CA1 area, sensorimotor cortex layers I-III/IV, and the striatal sensorimotor domain detected by single-photon emission computed tomography. Altered hippocampal and cortical activities correlated with reduction of distinct PMCA paralogs in Nptn lox/loxEmx1Cre mice and increased [iCa2+] in cultured mutant neurons. Human and rodent Np enhanced the post-transcriptional expression of and co-localized with PMCA paralogs in the plasma membrane of transfected cells. Our results indicate Np as essential for PMCA expression in glutamatergic neurons allowing proper [iCa2+] regulation and normal circuit activity. Neuron-type-specific Np ablation empowers the investigation of circuit-coded learning and memory and identification of causal mechanisms leading to cognitive deterioration.


Overexpression of serine protease HtrA enhances disruption of adherens junctions, paracellular transmigration and type IV secretion of CagA by Helicobacter pylori.

  • Aileen Harrer‎ et al.
  • Gut pathogens‎
  • 2017‎

The serine protease HtrA is an important factor for regulating stress responses and protein quality control in bacteria. In recent studies, we have demonstrated that the gastric pathogen Helicobacter pylori can secrete HtrA into the extracellular environment, where it cleaves-off the ectodomain of the tumor suppressor and adherens junction protein E-cadherin on gastric epithelial cells.


Cyclin-dependent kinase 6 phosphorylates NF-κB P65 at serine 536 and contributes to the regulation of inflammatory gene expression.

  • Holger Buss‎ et al.
  • PloS one‎
  • 2012‎

Nuclear factor kappa-B (NF-κB) activates multiple genes with overlapping roles in cell proliferation, inflammation and cancer. Using an unbiased approach we identified human CDK6 as a novel kinase phosphorylating NF-κB p65 at serine 536. Purified and reconstituted CDK6/cyclin complexes phosphorylated p65 in vitro and in transfected cells. The physiological role of CDK6 for basal as well as cytokine-induced p65 phosphorylation or NF-κB activation was revealed upon RNAi-mediated suppression of CDK6. Inhibition of CDK6 catalytic activity by PD332991 suppressed activation of NF-κB and TNF-induced gene expression. In complex with a constitutively active viral cyclin CDK6 stimulated NF-κB p65-mediated transcription in a target gene specific manner and this effect was partially dependent on its ability to phosphorylate p65 at serine 536. Tumor formation in thymi and spleens of v-cyclin transgenic mice correlated with increased levels of p65 Ser536 phosphorylation, increased expression of CDK6 and upregulaton of the NF-κB target cyclin D3. These results suggest that aberrant CDK6 expression or activation that is frequently observed in human tumors can contribute through NF-κB to chronic inflammation and neoplasia.


Rapid paracellular transmigration of Campylobacter jejuni across polarized epithelial cells without affecting TER: role of proteolytic-active HtrA cleaving E-cadherin but not fibronectin.

  • Manja Boehm‎ et al.
  • Gut pathogens‎
  • 2012‎

Campylobacter jejuni is one of the most important bacterial pathogens causing food-borne illness worldwide. Crossing the intestinal epithelial barrier and host cell entry by C. jejuni is considered the primary reason of damage to the intestinal tissue, but the molecular mechanisms as well as major bacterial and host cell factors involved in this process are still widely unclear.


Helicobacter pylori CagA protein targets the c-Met receptor and enhances the motogenic response.

  • Yuri Churin‎ et al.
  • The Journal of cell biology‎
  • 2003‎

Infection with the human microbial pathogen Helicobacter pylori is assumed to lead to invasive gastric cancer. We find that H. pylori activates the hepatocyte growth factor/scatter factor receptor c-Met, which is involved in invasive growth of tumor cells. The H. pylori effector protein CagA intracellularly targets the c-Met receptor and promotes cellular processes leading to a forceful motogenic response. CagA could represent a bacterial adaptor protein that associates with phospholipase Cgamma but not Grb2-associated binder 1 or growth factor receptor-bound protein 2. The H. pylori-induced motogenic response is suppressed and blocked by the inhibition of PLCgamma and of MAPK, respectively. Thus, upon translocation, CagA modulates cellular functions by deregulating c-Met receptor signaling. The activation of the motogenic response in H. pylori-infected epithelial cells suggests that CagA could be involved in tumor progression.


The GABAergic system in the retina of neonate and adult Octodon degus, studied by immunohistochemistry and electroretinography.

  • Luz M Delgado‎ et al.
  • The Journal of comparative neurology‎
  • 2009‎

In the vertebrate retina, gamma-aminobutyric acid (GABA) mediates inhibitory processes that shape the visual response and is also thought to have neurotrophic functions during retinal development. To investigate the role of GABAergic signaling at the beginning of visual experience, we used immunohistochemistry to compare the distribution of GABA, the two isoforms of glutamic acid decarboxylase GAD65/67, and the GABA receptor types A, B, and C, in neonate versus adult Octodon degus, a native South American rodent with diurnal-crepuscular activity and a high cone-to-rod ratio. In parallel, we used electroretinography to evaluate retinal functionality and to test the contribution of fast GABAergic transmission to light responses at both developmental stages. Neonate O. degus opened their eyes on postnatal day (P)0 and displayed an adult-like retinal morphology at this time. GABA, its biosynthetic sources, and receptors had a similar cellular distribution in neonates and adults, but labeling of the outer plexiform layer and of certain amacrine and ganglion cells was more conspicuous at P0. In neonates, retinal sensitivity was 10 times lower than in adults, responses to ultraviolet light could not be detected, and oscillatory potentials were reduced or absent. Blockade of GABA(A/C) receptors by bicuculline and TPMPA had no noticeable effect in neonates, while it significantly altered the electroretinogram response in adults.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: