Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 2 papers out of 2 papers

Transient relaxation of rat mesenteric microvessels by ceramides.

  • Peter Czyborra‎ et al.
  • British journal of pharmacology‎
  • 2002‎

We have investigated the vasodilating effects of D-erythro-C2-ceramide (C2-ceramide) in methoxamine-contracted rat mesenteric microvessels. C2-ceramide (10 - 100 microM) caused a concentration-dependent, slowly developing relaxation which reached maximum values after approximately 10 min and partially abated thereafter. Endothelium removal or inhibitors of guanylyl cyclase (3 microM ODQ), protein kinase A (10 microM H7, 1 microM H89) and various types of K(+) channels (10 microM BaCl(2), 3 mM tetraethylammonium, 30 nM charybdotoxin, 30 nM iberiotoxin, 300 nM apamine, 10 microM glibenclamide) had only small if any inhibitory effects against C2-ceramide-induced vasodilation, but some of them attenuated vasodilation by sodium nitroprusside or isoprenaline. A combination of ODQ and charybdotoxin almost completely abolished C2-ceramide-induced vasodilation. A second administration of C2-ceramide caused a detectable but weaker relaxation. L-threo-C2-ceramide (100 microM), which should not be a substrate to ceramide metabolism, had no biphasic time course. The ceramidase inhibitor (1S,2R)-D-erythro-2-(N-myristoylamino)-1-phenyl-1-propanol (100 microM) alone caused some vasodilation, indicating vasodilation by endogenous ceramides, and also hastened relaxation by exogenous C2-ceramide. The late-developing reversal of C2-ceramide-induced vasodilation was absent when alpha-adrenergic tone was removed by addition of 10 microM phentolamine. We conclude that C2-ceramide relaxes rat resistance vessels in an endothelium-independent manner which is prevented only by combined inhibition of guanylyl cyclase and charybdotoxin-sensitive K(+) channels. The vasodilation abates with time partly due to desensitization of the ceramide response and partly due to metabolism of C2-ceramide to an inactive metabolite.


Sphingosylphosphorylcholine, a naturally occurring lipid mediator, inhibits human platelet function.

  • Christoph Altmann‎ et al.
  • British journal of pharmacology‎
  • 2003‎

1 The lysophospholipids, lysophosphatidic acid and sphingosine 1-phosphate, have been reported to activate platelets. Here we examined effects of the naturally occurring related sphingosylphosphorylcholine (SPC) on human platelet function. 2 Platelet activation was determined as aggregation, elevation of intracellular Ca(2+) concentrations, surface expression of P-selectin, GP 53, and GP IIb/IIIa neoepitope PAC-1, and of fibrinogen binding to the platelet surface. 3 Platelets were activated by ADP (5 and 20 micro M), the thrombin receptor-activating peptide TRAP-6 (5 and 20 micro M), the thromboxane A(2) mimetic U-46619 (1 micro M) and collagen (20 and 50 micro g ml(-1)) but not by SPC (up to 20 micro M). 4 SPC concentration-dependently (IC(50) approximately 1-10 micro M) inhibited activation of washed human platelets in response to all of the above agonists, with almost complete inhibition occurring at 20 micro M SPC. 5 The SPC stereoisomers, D-erythro SPC and L-threo SPC, exhibited similar concentration-response curves in inhibiting 20 micro M ADP-induced platelet aggregation, suggesting that SPC did not act via specific lysophospholipid receptors. 6 Although SPC slightly activated platelet protein kinase A (as assessed by VASP phosphorylation), this effect could not explain the marked platelet inhibition. Possible protein kinase C inhibition also did not explain the inhibition of platelet activation by SPC. On the other hand, SPC suppressed agonist-induced Ca(2+) mobilization and phospholipase C stimulation. 7 These results indicate that the lysophospholipid SPC is an effective inhibitor of human platelet activation, apparently primarily by uncoupling agonist-activated receptors from their effectors.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: