Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 20 papers out of 104 papers

Common variants in CDKAL1, CDKN2A/B, IGF2BP2, SLC30A8, and HHEX/IDE genes are associated with type 2 diabetes and impaired fasting glucose in a Chinese Han population.

  • Ying Wu‎ et al.
  • Diabetes‎
  • 2008‎

Genome-wide association studies have identified common variants in CDKAL1, CDKN2A/B, IGF2BP2, SLC30A8, HHEX/IDE, EXT2, and LOC387761 loci that significantly increase the risk of type 2 diabetes. We aimed to replicate these observations in a population-based cohort of Chinese Hans and examine the associations of these variants with type 2 diabetes and diabetes-related phenotypes.


Self-Rated Health in middle-aged and elderly Chinese: distribution, determinants and associations with cardio-metabolic risk factors.

  • Nazanin Haseli-Mashhadi‎ et al.
  • BMC public health‎
  • 2009‎

Self-rated health (SRH) has been demonstrated to be an accurate reflection of a person's health and a valid predictor of incident mortality and chronic morbidity. We aimed to evaluate the distribution and factors associated with SRH and its association with biomarkers of cardio-metabolic diseases among middle-aged and elderly Chinese.


Musashi-2 Silencing Exerts Potent Activity against Acute Myeloid Leukemia and Enhances Chemosensitivity to Daunorubicin.

  • Yixiang Han‎ et al.
  • PloS one‎
  • 2015‎

RNA-binding protein Musashi-2 (Msi2) is known to play a critical role in leukemogenesis and contributes to poor clinical prognosis in acute myeloid leukemia (AML). However, the effect of Msi2 silencing on treatment for AML still remains poorly understood. In this study, we used lentivirus-mediated RNA interference targeting Msi2 to investigate the resulting changes in cellular processes and the underlying mechanisms in AML cell lines as well as primary AML cells isolated from AML patients. We found that Msi2 was highly expressed in AML cells, and its depletion inhibited Ki-67 expression and resulted in decreased in vitro and in vivo proliferation. Msi2 silencing induced cell cycle arrest in G0/G1 phase, with decreased Cyclin D1 and increased p21 expression. Msi2 silencing induced apoptosis through down-regulation of Bcl-2 expression and up-regulation of Bax expression. Suppression of Akt, Erk1/2 and p38 phosphorylation also contributed to apoptosis mediated by Msi2 silencing. Finally, Msi2 silencing in AML cells also enhanced their chemosensitivity to daunorubicin. Conclusively, our data suggest that Msi2 is a promising target for gene therapy to optimize conventional chemotherapeutics in AML treatment.


Histone Deacetylase Inhibitors Trichostatin A and MCP30 Relieve Benzene-Induced Hematotoxicity via Restoring Topoisomerase IIα.

  • Jingjing Chen‎ et al.
  • PloS one‎
  • 2016‎

Dysfunction of histone acetylation inhibits topoisomerase IIα (Topo IIα), which is implicated in benzene-induced hematotoxicity in patients with chronic benzene exposure. Whether histone deacetylase (HDAC) inhibitors can relieve benzene-induced hematotoxicity remains unclear. Here we showed that hydroquinone, a main metabolite of benzene, increased the HDAC activity, decreased the Topo IIα expression and induced apoptosis in human bone marrow mononuclear cells in vitro, and treatment with two HDAC inhibitors, namely trichostatin A (TSA) or a mixture of ribosome-inactivating proteins MCP30, almost completely reversed these effects. We further established a benzene poisoning murine model by inhaling benzene vapor in a container and found that benzene poisoning decreased the expression and activity of Topo IIα, and impaired acetylation of histone H4 and H3. The analysis of regulatory factors of Topo IIα promoter found that benzene poisoning decreased the mRNA levels of SP1 and C-MYB, and increased the mRNA level of SP3. Both TSA and MCP30 significantly enhanced the acetylation of histone H3 and H4 in Topo IIα promoter and increased the expression and activity of Topo IIα in benzene poisoning mice, which contributed to relieve the symptoms of hematotoxicity. Thus, treatment with HDAC inhibitors represents an attractive approach to reduce benzene-induced hematotoxicity.


Apolipoprotein E-knockout mice show increased titers of serum anti-nuclear and anti-dsDNA antibodies.

  • Yuehai Wang‎ et al.
  • Biochemical and biophysical research communications‎
  • 2012‎

Apolipoprotein E-knockout (ApoE(-/-)) mice, atherosclerosis-prone mice, show an autoimmune response, but the pathogenesis is not fully understood. We investigated the pathogenesis in female and male ApoE(-/-) mice. The spleens of all ApoE(-/-) and C57BL/6 (B6) mice were weighed. The serum IgG level and titers of anti-nuclear antibody (ANA) and anti-double-stranded DNA (anti-dsDNA) antibody were assayed by ELISA. Apoptosis of spleen tissue was evaluated by TUNEL. TLR4 level in spleen tissue was tested by immunohistochemistry and Western blot analysis. Levels of MyD88, p38, phosphorylated p38 (pp38), interferon regulatory factor 3 (IRF3) and Bcl-2-associated X protein (Bax) in spleen tissue were detected by Western blot analysis. We also survey the changes of serum autoantibodies, spleen weight, splenocyte apoptosis and the expressions of TLR4, MyD88, pp38, IRF3 and Bax in spleen tissue in male ApoE(-/-) mice after 4weeks of lipopolysaccharide (LPS), Toll-like receptor 4 ligand, administration. ApoE(-/-) mice showed splenomegaly and significantly increased serum level of IgG and titers of ANA and anti-dsDNA antibody as compared with B6 mice. Splenocyte apoptosis and the expression of TLR4, MyD88, pp38, IRF3 and Bax in spleen tissue were significantly lower in ApoE(-/-) than B6 mice. The expression of TLR4, MyD88, IRF3, pp38, and Bax differed by sex in ApoE(-/-) spleen tissue. The down-regulation of TLR4 signal molecules induced by LPS led to decreased expression of Bax and increased serum titers of ANA and anti-dsDNA antibody. Therefore, the TLR4 signal pathway may participate in maintaining the balance of splenocyte apoptosis and autoantibody production in ApoE(-/-) mice.


Pure curcumin decreases the expression of WT1 by upregulation of miR-15a and miR-16-1 in leukemic cells.

  • Shen-meng Gao‎ et al.
  • Journal of experimental & clinical cancer research : CR‎
  • 2012‎

Pure curcumin has been reported to down-regulate the expression of WT1 in leukemic cells. However, the molecular mechanism underlying the down-regulation of WT1 by curcumin is not completely delineated. The purpose of this present study is to identify a new miRNA-mediated mechanism which plays an important role in the anti-proliferation effects of curcumin in leukemic cells.


Inhibition of autophagy enhances the antitumour activity of tigecycline in multiple myeloma.

  • Ruye Ma‎ et al.
  • Journal of cellular and molecular medicine‎
  • 2018‎

Accumulating evidence shows that tigecycline, a first-in-class glycylcycline, has potential antitumour properties. Here, we found that tigecycline dramatically inhibited the proliferation of multiple myeloma (MM) cell lines RPMI-8226, NCI-H929 and U266 in a dose and time-dependent manner. Meanwhile, tigecycline also potently impaired the colony formation of these three cell lines. Mechanism analysis found that tigecycline led to cell cycle arrest at G0/G1 with down-regulation of p21, CDK2 and cyclin D1, rather than induced apoptosis, in MM cells. Importantly, we found that tigecycline induced autophagy and an autophagy inhibitor bafilomycin A1 further amplified the tigecycline-induced cytotoxicity, suggesting that autophagy plays a cytoprotective role in tigecycline-treated MM cells. Mechanisms modulating autophagy found that tigecycline enhanced the phosphorylation of AMPK, but did not decrease the phosphorylation of Akt, to inhibit the phosphorylation of mTOR and its two downstream effectors p70S6K1 and 4E-BP1. Tigecycline effectively inhibited tumour growth in the xenograft tumour model of RPMI-8226 cells. Autophagy also occurred in tigecycline-treated tumour xenograft, and autophagy inhibitor chloroquine and tigecycline had a synergistic effect against MM cells in vivo. Thus, our results suggest that tigecycline may be a promising candidate in the treatment of MM.


Prognostic significance of the red blood cell distribution width that maintain at high level following completion of first line therapy in mutiple myeloma patients.

  • Yongyong Ma‎ et al.
  • Oncotarget‎
  • 2018‎

To investigate the prognostic value of the red blood cell distribution width(RDW) recovery from low levels at diagnosis after completion of first line therapy in mutiple myeloma (MM)patients,we enrolled 78 consecutive patients with MM and followed up from 2005 to 2016 in our hospital. The RDW was measured following completion of first-line therapy.The log-rank test, univariate analysis, and Cox regression analysis were used to evaluate the relationship between RDW and survival. We found that patients with an RDW ≥ 15.5% at diagnosis, as well as at completion of first-line therapy, had significantly lower progression-free survival (PFS) and overall survival(OS) rates than those with an RDW < 15.5%(P < 0.05).Patients with RDW that maintained more than 15.5% upon completion of therapy showed a shorter OS (P < 0.05) and PFS (P < 0.05) compared with patients with an RDW that decreased to a lower level.The multivariate analysis showed that RDW ≥ 15.5% after the completion of first-line therapy were an independent prognostic marker of poorer OS (P = 0.044) and PFS (P = 0.034). Therefore,we demonstrated that RDW at diagnosis, as well as at completion of first-line therapy is an independent predictor for mutiple myeloma patients.RDW maintained at high level, irrespective of whether RDW decreased to the cutoff value predicted an unfavorable prognosis in patients with MM.


Compacting a synthetic yeast chromosome arm.

  • Zhouqing Luo‎ et al.
  • Genome biology‎
  • 2021‎

Redundancy is a common feature of genomes, presumably to ensure robust growth under different and changing conditions. Genome compaction, removing sequences nonessential for given conditions, provides a novel way to understand the core principles of life. The synthetic chromosome rearrangement and modification by loxP-mediated evolution (SCRaMbLE) system is a unique feature implanted in the synthetic yeast genome (Sc2.0), which is proposed as an effective tool for genome minimization. As the Sc2.0 project is nearing its completion, we have begun to explore the application of the SCRaMbLE system in genome compaction.


Altered Brain Network Centrality in Patients with Adult Strabismus with Amblyopia: A Resting-State Functional Magnetic Resonance Imaging (fMRI) Study.

  • Kang-Rui Wu‎ et al.
  • Medical science monitor : international medical journal of experimental and clinical research‎
  • 2020‎

BACKGROUND The aim of this study was to explore potential changes in brain function network activity in patients with adult strabismus with amblyopia (SA) using the voxel-wise degree centrality (DC) method. MATERIAL AND METHODS We enrolled 15 patients with SA (6 males, 9 females) and 15 sex-matched healthy controls (HCs). All subjects completed resting functional magnetic resonance imaging scans. Independent-sample t tests and receiver operating characteristic (ROC) curves were used to assess DC value differences between groups, and Pearson correlation analysis was performed to evaluate correlations between DC-changed brain regions and clinical data of patients with SA. RESULTS Compared with the HC group, DC values that were lower in patients with SA included the left middle frontal gyrus and bilateral angular gyri. Increases were observed in the left fusiform gyrus, right lingual gyrus, right middle occipital gyrus, right postcentral gyrus, and left paracentral lobule. However, DC values were not correlated with clinical manifestations. ROC curve analysis showed high accuracy. CONCLUSIONS We found abnormal neural activity in specific brain regions in patients with SA. Specifically, we observed significant changes in DC values compared to HCs. These changes may be useful to identify the specific mechanisms involved in brain dysfunction in SA.


UBASH3B promotes tamoxifen resistance and could be negatively regulated by ESR1.

  • Ketao Jin‎ et al.
  • Oncotarget‎
  • 2018‎

To explore the prognostic value of UBASH3B in ER+ breast cancer patients and explore potential molecular mechanisms.


Physical activity and sleep duration during pregnancy have interactive effects on caesarean delivery: a population-based cohort study in Tianjin, China.

  • Yingzi Yang‎ et al.
  • BMC pregnancy and childbirth‎
  • 2021‎

There were inconsistent findings in the literature regarding the associations of physical activity and sleep duration during pregnancy with caesarean delivery for different reasons. It was also unknown whether physical activity and sleep duration during pregnancy had interactive effects on the risks of different types of caesarean delivery. The study aimed to investigate the effects of physical activity, sleep duration and their interactions on the risk of caesarean delivery for medical reasons and non-medical reasons.


The MYB family transcription factor TuODORANT1 from Triticum urartu and the homolog TaODORANT1 from Triticum aestivum inhibit seed storage protein synthesis in wheat.

  • Guangbin Luo‎ et al.
  • Plant biotechnology journal‎
  • 2021‎

Seed storage proteins (SSPs) are determinants of wheat end-product quality. SSP synthesis is mainly regulated at the transcriptional level. Few transcriptional regulators of SSP synthesis have been identified in wheat and this study aims to identify novel SSP gene regulators. Here, the R2R3 MYB transcription factor TuODORANT1 from Triticum urartu was found to be preferentially expressed in the developing endosperm during grain filling. In common wheat (Triticum aestivum) overexpressing TuODORANT1, the transcription levels of all the SSP genes tested by RNA-Seq analysis were reduced by 49.71% throughout grain filling, which contributed to 13.38%-35.60% declines in the total SSP levels of mature grains. In in vitro assays, TuODORANT1 inhibited both the promoter activities and the transcription of SSP genes by 1- to 13-fold. The electrophoretic mobility shift assay (EMSA) and ChIP-qPCR analysis demonstrated that TuODORANT1 bound to the cis-elements 5'-T/CAACCA-3' and 5'-T/CAACT/AG-3' in SSP gene promoters both in vitro and in vivo. Similarly, the homolog TaODORANT1 in common wheat hindered both the promoter activities and the transcription of SSP genes by 1- to 112-fold in vitro. Knockdown of TaODORANT1 in common wheat led to 14.73%-232.78% increases in the transcription of the tested SSP genes, which contributed to 11.43%-19.35% elevation in the total SSP levels. Our data show that both TuODORANT1 and TaODORANT1 are repressors of SSP synthesis.


Frequent germplasm exchanges drive the high genetic diversity of Chinese-cultivated common apricot germplasm.

  • Qiuping Zhang‎ et al.
  • Horticulture research‎
  • 2021‎

The genetic diversity of germplasm is critical for exploring genetic and phenotypic resources and has important implications for crop-breeding sustainability and improvement. However, little is known about the factors that shape and maintain genetic diversity. Here, we assembled a high-quality chromosome-level reference of the Chinese common apricot 'Yinxiangbai', and we resequenced 180 apricot accessions that cover four major ecogeographical groups in China and other accessions from occidental countries. We concluded that Chinese-cultivated common apricot germplasms possessed much higher genetic diversity than those cultivated in Western countries. We also detected seven migration events among different apricot groups, where 27% of the genome was identified as being introgressed. Remarkably, we demonstrated that these introgressed regions drove the current high level of germplasm diversity in Chinese-cultivated common apricots by introducing different genes related to distinct phenotypes from different cultivated groups. Our results highlight the consideration that introgressed regions may provide an important reservoir of genetic resources that can be used to sustain modern breeding programs.


Synthetic refactor of essential genes decodes functionally constrained sequences in yeast genome.

  • Zhenzhen Liang‎ et al.
  • iScience‎
  • 2022‎

The relationship between gene sequence and function matters for fundamental and practical reasons. Here, yeast essential genes were systematically refactored to identify invariable sequences in the coding and regulatory regions. The coding sequences were synonymously recoded with all optimal codons to explore the importance of codon choice. The promoters and terminators were swapped with well-characterized CYC1 promoter and terminator to examine whether a specialized expression is required for the function of a specific gene. Among the 10 essential genes from Chr.XIIL, this scheme successfully generated 7 refactored genes that can effectively support wild-type-like fitness under various conditions, thereby revealing amazing sequence plasticity of yeast genes. Moreover, different invariable elements were identified from the remaining 3 genes, exampling the logics for genetic information encoding and regulation. Further refactoring of all essential genes using this strategy will generate comprehensive understanding of gene sequence choice, thereby guiding its design in various applications.


Correlation between Mild Cognitive Impairment and Sarcopenia: The Prospective Role of Lipids and Basal Metabolic Rate in the Link.

  • Xuan Wang‎ et al.
  • Nutrients‎
  • 2022‎

There is evidence of correlation between mild cognitive impairment (MCI) and sarcopenia (SA). However, the influencing factors and the mechanism, such as age-related lipid redistribution, remain unknown. This study aimed to clarify the role of dietary fats and erythrocyte lipids profile combined with basal metabolic rate (BMR) in the link between MCI and SA. A total of 1050 participants aged 65 to 85 were divided into control, MCI, SA and MCI and SA groups. Bioelectrical impedance analysis was used to evaluate appendicular lean mass and BMR. Cognition and dietary nutrition were detected by neuropsychological tests and food frequency questionnaires. UHPLC-QExactive-MS/MS and UHPLC-Qtrap-MS/MS were used to conduct the lipidomics analysis. Lower dietary intake of different phospholipids, unsaturated fatty acids and kinds of choline were significantly associated with MCI and SA. Least absolute shrinkage and selection operator, multivariate logistic regression, receiver operating characteristic curve and validation tests provided evidence that specific phospholipids, unsaturated fatty acids and BMR might be the critical factors in the processing of MCI and SA, as well as in their link. The lipidomic analysis observed a clear discrimination of the lipid profiles in the individuals who are in MCI, SA, or MCI and SA, compared with the control. Lower expressions in certain phospholipid species, such as sphingomyelin and phosphatidylethanolamines, decreased phosphatidylcholine with more unsaturated double bonds, lower level of lipids with C20:5 and C20:4, higher level of lipids with C18:2 and lipids with a remodeled length of acyl chain, might be closely related to the link between MCI and SA. Inadequate dietary intake and lower concentrations of the erythrocyte lipid profile of phospholipids and unsaturated fatty acids with a lower level of BMR might be the key points that lead to progress in MCI and SA, as well as in their link. They could be used as the prospective biomarkers for the higher risk of cognitive decline and/or SA in elderly population.


Loss of GABARAPL1 confers ferroptosis resistance to cancer stem-like cells in hepatocellular carcinoma.

  • Xiaojing Du‎ et al.
  • Molecular oncology‎
  • 2022‎

Cancer stem-like cells (CSLC) are considered a major contributor to the development and progression of hepatocellular carcinoma (HCC). Previous studies indicated that CSLC are characterized by resistance to ferroptosis, a type of lipid peroxidation-dependent cell death. Here, we identified a set of ferroptosis-related stemness genes (FRSG) and found that these genes may be involved in immune infiltration in HCC. A four-FRSG (CDKN2A, GABARAPL1, HRAS, RPL8) risk model with prognostic prediction was constructed by a Cox analysis in HCC. Among these four genes, GABARAPL1 was downregulated in HCC tumor-repopulating cells (TRC; a type of CSLC). Its downregulation decreased the sensitivity of HCC TRC to erastin- or sorafenib-triggered ferroptosis. Together, we uncovered a molecular mechanism via which CSLC could achieve tolerance to ferroptosis. Further studies may provide potential therapeutic strategies targeting CSLC in HCC.


Novel risk model based on angiogenesis-related lncRNAs for prognosis prediction of hepatocellular carcinoma.

  • Shicheng Xie‎ et al.
  • Cancer cell international‎
  • 2023‎

Hepatocellular carcinoma (HCC) is a major cause of cancer-related death due to early metastasis or recurrence. Tumor angiogenesis plays an essential role in the tumorigenesis of HCC. Accumulated studies have validated the crucial role of lncRNAs in tumor angiogenesis. Here, we established an angiogenesis-related multi-lncRNAs risk model based on the machine learning for HCC prognosis prediction. Firstly, a total of 348 differential expression angiogenesis-related lncRNAs were identified by correlation analysis. Then, 20 of these lncRNAs were selected through univariate cox analysis and used for in-depth study of machine learning. After 1,000 random sampling cycles calculating by random forest algorithm, four lncRNAs were found to be highly associated with HCC prognosis, namely LUCAT1, AC010761.1, AC006504.7 and MIR210HG. Subsequently, the results from both the training and validation sets revealed that the four lncRNAs-based risk model was suitable for predicting HCC recurrence. Moreover, the infiltration of macrophages and CD8 T cells were shown to be closely associated with risk score and promotion of immune escape. The reliability of this model was validated by exploring the biological functions of lncRNA MIR210HG in HCC cells. The results showed that MIR210HG silence inhibited HCC growth and migration through upregulating PFKFB4 and SPAG4. Taken together, this angiogenesis-related risk model could serve as a reliable and promising tool to predict the prognosis of HCC.


Apolipoprotein E deficiency and high-fat diet cooperate to trigger lipidosis and inflammation in the lung via the toll-like receptor 4 pathway.

  • Qiufang Ouyang‎ et al.
  • Molecular medicine reports‎
  • 2015‎

Apolipoprotein E deficiency (ApoE(-/-)) combined with a high-fat Western-type diet (WD) is known to activate the toll-like receptor (TLR4) pathway and promote atherosclerosis. However, to date, the pathogenic effects of these conditions on the lung have not been extensively studied. Therefore, the present study examined the effects of ApoE(-/-) and a WD on lung injury and investigated the underlying mechanisms. ApoE(-/-) and wild-type mice were fed a WD or normal chow diet for 4, 12 and 24 weeks. Lung inflammation, lung cholesterol content and cytokines profiles in broncho-alveolar lavage fluid (BALF) were determined. TLR4 and its main downstream molecules were analyzed with western blot analysis. In addition, the role of the TLR4 pathway was further validated using TLR4-targeted gene silencing. The results showed that ApoE(-/-) mice developed lung lipidosis following 12 weeks of receiving a WD, as evidenced by an increased lung cholesterol content. Moreover, dependent on the time period of receiving the diet, those mice exhibited pulmonary inflammation, which was manifested by initial leukocyte recruitment (at 4 weeks), by increased alveolar septal thickness and mean linear intercept as well as elevated production of inflammation mediators (at 12 weeks), and by granuloma formation (at 24 weeks). The expression levels of TLR4, myeloid differentiation primary response 88 (MyD88) and nuclear factor kappa B were markedly upregulated in ApoE(-/-) WD mice at week 12. However, these effects were ameliorated by shRNA-mediated knockdown of TLR4. By contrast, ApoE(-/-) ND or wild-type WD mice exhibited low-grade or no inflammation and mild lipidosis. The levels of TLR4 and MyD88 in those mice showed only minor changes. In conclusion, ApoE deficiency acts synergistically with a WD to trigger lung lipidosis and inflammation at least in part via TLR4 signaling.


Lipoprotein lipase, tissue expression and effects on genes related to fatty acid synthesis in goat mammary epithelial cells.

  • Wang-Sheng Zhao‎ et al.
  • International journal of molecular sciences‎
  • 2014‎

Lipoprotein lipase (LPL) serves as a central factor in hydrolysis of triacylglycerol and uptake of free fatty acids from the plasma. However, there are limited data concerning the action of LPL on the regulation of milk fat synthesis in goat mammary gland. In this investigation, we describe the cloning and sequencing of the LPL gene from Xinong Saanen dairy goat mammary gland, along with a study of its phylogenetic relationships. Sequence analysis showed that goat LPL shares similarities with other species including sheep, bovine, human and mouse. LPL mRNA expression in various tissues determined by RT-qPCR revealed the highest expression in white adipose tissue, with lower expression in heart, lung, spleen, rumen, small intestine, mammary gland, and kidney. Expression was almost undetectable in liver and muscle. The expression profiles of LPL gene in mammary gland at early, peak, mid, late lactation, and the dry period were also measured. Compared with the dry period, LPL mRNA expression was markedly greater at early lactation. However, compared with early lactation, the expression was lower at peak lactation and mid lactation. Despite those differences, LPL mRNA expression was still greater at peak, mid, and late lactation compared with the dry period. Using goat mammary epithelial cells (GMEC), the in vitro knockdown of LPL via shRNA or with Orlistat resulted in a similar degree of down-regulation of LPL (respectively). Furthermore, knockdown of LPL was associated with reduced mRNA expression of SREBF1, FASN, LIPE and PPARG but greater expression of FFAR3. There was no effect on ACACA expression. Orlistat decreased expression of LIPE, FASN, ACACA, and PPARG, and increased FFAR3 and SREBF1 expression. The pattern of LPL expression was similar to the changes in milk fat percentage in lactating goats. Taken together, results suggest that LPL may play a crucial role in fatty acid synthesis.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: