Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 2 papers out of 2 papers

A 3D-Printed Dual Driving Forces Scaffold with Self-Promoted Cell Absorption for Spinal Cord Injury Repair.

  • Chen Qiu‎ et al.
  • Advanced science (Weinheim, Baden-Wurttemberg, Germany)‎
  • 2023‎

Stem cells play critical roles in cell therapies and tissue engineering for nerve repair. However, achieving effective delivery of high cell density remains a challenge. Here, a novel cell delivery platform termed the hyper expansion scaffold (HES) is developed to enable high cell loading. HES facilitated self-promoted and efficient cell absorption via a dual driving force model. In vitro tests revealed that the HES rapidly expanded 80-fold in size upon absorbing 2.6 million human amniotic epithelial stem cells (hAESCs) within 2 min, representing over a 400% increase in loading capacity versus controls. This enhanced uptake benefited from macroscopic swelling forces as well as microscale capillary action. In spinal cord injury (SCI) rats, HES-hAESCs promoted functional recovery and axonal projection by reducing neuroinflammation and improving the neurotrophic microenvironment surrounding the lesions. In summary, the dual driving forces model provides a new rationale for engineering hydrogel scaffolds to facilitate self-promoted cell absorption. The HES platform demonstrates great potential as a powerful and efficient vehicle for delivering high densities of hAESCs to promote clinical treatment and repair of SCI.


Muscle Injuries Induce a Prostacyclin-PPARγ/PGC1a-FAO Spike That Boosts Regeneration.

  • Lanfang Luo‎ et al.
  • Advanced science (Weinheim, Baden-Wurttemberg, Germany)‎
  • 2023‎

It is well-known that muscle regeneration declines with aging, and aged muscles undergo degenerative atrophy or sarcopenia. While exercise and acute injury are both known to induce muscle regeneration, the molecular signals that help trigger muscle regeneration have remained unclear. Here, mass spectrometry imaging (MSI) is used to show that injured muscles induce a specific subset of prostanoids during regeneration, including PGG1, PGD2, and the prostacyclin PGI2. The spike in prostacyclin promotes skeletal muscle regeneration via myoblasts, and declines with aging. Mechanistically, the prostacyclin spike promotes a spike in PPARγ/PGC1a signaling, which induces a spike in fatty acid oxidation (FAO) to control myogenesis. LC-MS/MS and MSI further confirm that an early FAO spike is associated with normal regeneration, but muscle FAO became dysregulated during aging. Functional experiments demonstrate that the prostacyclin-PPARγ/PGC1a-FAO spike is necessary and sufficient to promote both young and aged muscle regeneration, and that prostacyclin can synergize with PPARγ/PGC1a-FAO signaling to restore aged muscles' regeneration and physical function. Given that the post-injury prostacyclin-PPARγ-FAO spike can be modulated pharmacologically and via post-exercise nutrition, this work has implications for how prostacyclin-PPARγ-FAO might be fine-tuned to promote regeneration and treat muscle diseases of aging.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: