Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 20 papers out of 83 papers

VENTX induces expansion of primitive erythroid cells and contributes to the development of acute myeloid leukemia in mice.

  • Eva Gentner‎ et al.
  • Oncotarget‎
  • 2016‎

Homeobox genes are key regulators in normal and malignant hematopoiesis. The human Vent-like homeobox gene VENTX, a putative homolog of the Xenopus laevis Xvent-2 gene, was shown to be highly expressed in normal myeloid cells and in patients with acute myeloid leukemia. We now demonstrate that constitutive expression of VENTX suppresses expression of genes responsible for terminal erythroid differentiation in normal CD34+ stem and progenitor cells. Transplantation of bone marrow progenitor cells retrovirally engineered to express VENTX caused massive expansion of primitive erythroid cells and partly acute erythroleukemia in transplanted mice. The leukemogenic potential of VENTX was confirmed in the AML1-ETO transplantation model, as in contrast to AML1-ETO alone co-expression of AML1-ETO and VENTX induced acute myeloid leukemia, partly expressing erythroid markers, in all transplanted mice. VENTX was highly expressed in patients with primary human erythroleukemias and knockdown of VENTX in the erythroleukemic HEL cell line significantly blocked cell growth. In summary, these data indicate that VENTX is able to perturb erythroid differentiation and to contribute to myeloid leukemogenesis when co-expressed with appropriate AML oncogenes and point to its potential significance as a novel therapeutic target in AML.


Reversal of CD8 T-cell-mediated mucocutaneous graft-versus-host-like disease by the JAK inhibitor tofacitinib.

  • Naoko Okiyama‎ et al.
  • The Journal of investigative dermatology‎
  • 2014‎

The utility of allogeneic hematopoietic stem cell transplantation is limited by graft-versus-host disease (GVHD), a significant cause of morbidity and mortality. Patients with GVHD exhibit cutaneous manifestations with histological features of interface dermatitis followed by scleroderma-like changes. JAK inhibitors represent a class of immunomodulatory drugs that inhibit signaling by multiple cytokines. Herein we report the effects of tofacitinib in a murine model of GVHD. Oral administration of tofacitinib prevented GVHD-like disease manifested by weight loss and mucocutaneous lesions. More importantly, tofacitinib was also effective in reversing established disease. Tofacitinib diminished the expansion and activation of murine CD8 T cells in this model, and had similar effects on IL-2-stimulated human CD8 T cells. Tofacitinib also inhibited the expression of IFN-γ-inducible chemoattractants by keratinocytes, and IFN-γ-inducible cell death of keratinocytes. Tofacitinib may be an effective drug for treatment against CD8 T-cell-mediated mucocutaneous diseases in patients with GVHD.


A Novel Unsupervised Segmentation Approach Quantifies Tumor Tissue Populations Using Multiparametric MRI: First Results with Histological Validation.

  • Prateek Katiyar‎ et al.
  • Molecular imaging and biology‎
  • 2017‎

We aimed to precisely estimate intra-tumoral heterogeneity using spatially regularized spectral clustering (SRSC) on multiparametric MRI data and compare the efficacy of SRSC with the previously reported segmentation techniques in MRI studies.


The Positron Emission Tomography Tracer 3'-Deoxy-3'-[18F]Fluorothymidine ([18F]FLT) Is Not Suitable to Detect Tissue Proliferation Induced by Systemic Yersinia enterocolitica Infection in Mice.

  • Stefan Wiehr‎ et al.
  • PloS one‎
  • 2016‎

Most frequently, gram-negative bacterial infections in humans are caused by Enterobacteriaceae and remain a major challenge in medical diagnostics. We non-invasively imaged moderate and severe systemic Yersinia enterocolitica infections in mice using the positron emission tomography (PET) tracer 3'-deoxy-3'-[18F]fluorothymidine ([18F]FLT), which is a marker of proliferation, and compared the in vivo results to the ex vivo biodistributions, bacterial loads, and histologies of the corresponding organs. Y. enterocolitica infection is detectable with histology using H&E staining and immunohistochemistry for Ki 67. [18F]FLT revealed only background uptake in the spleen, which is the main manifestation site of systemic Y. enterocolitica-infected mice. The uptake was independent of the infection dose. Antibody-based thymidine kinase 1 (Tk-1) staining confirmed the negative [18F]FLT-PET data. Histological alterations of spleen tissue, observed via Ki 67-antibody-based staining, can not be detected by [18F]FLT-PET in this model. Thus, the proliferation marker [18F]FLT is not a suitable tracer for the diagnosis of systemic Y. enterocolitica infection in the C57BL/6 animal model of yersiniosis.


Interleukin-27 priming of T cells controls IL-17 production in trans via induction of the ligand PD-L1.

  • Kiyoshi Hirahara‎ et al.
  • Immunity‎
  • 2012‎

Interleukin-27 (IL-27) is a key immunosuppressive cytokine that counters T helper 17 (Th17) cell-mediated pathology. To identify mechanisms by which IL-27 might exert its immunosuppressive effect, we analyzed genes in T cells rapidly induced by IL-27. We found that IL-27 priming of naive T cells upregulated expression of programmed death ligand 1 (PD-L1) in a signal transducer and activator of transcription 1 (STAT1)-dependent manner. When cocultured with naive CD4(+) T cells, IL-27-primed T cells inhibited the differentiation of Th17 cells in trans through a PD-1-PD-L1 interaction. In vivo, coadministration of naive TCR transgenic T cells (2D2 T cells) with IL-27-primed T cells expressing PD-L1 inhibited the development of Th17 cells and protected from severe autoimmune encephalomyelitis. Thus, these data identify a suppressive activity of IL-27, by which CD4(+) T cells can restrict differentiation of Th17 cells in trans.


ER stress-mediated apoptosis in a new mouse model of osteogenesis imperfecta.

  • Thomas S Lisse‎ et al.
  • PLoS genetics‎
  • 2008‎

Osteogenesis imperfecta is an inherited disorder characterized by increased bone fragility, fractures, and osteoporosis, and most cases are caused by mutations affecting the type I collagen genes. Here, we describe a new mouse model for Osteogenesis imperfecta termed Aga2 (abnormal gait 2) that was isolated from the Munich N-ethyl-N-nitrosourea mutagenesis program and exhibited phenotypic variability, including reduced bone mass, multiple fractures, and early lethality. The causal gene was mapped to Chromosome 11 by linkage analysis, and a C-terminal frameshift mutation was identified in the Col1a1 (procollagen type I, alpha 1) gene as the cause of the disorder. Aga2 heterozygous animals had markedly increased bone turnover and a disrupted native collagen network. Further studies showed that abnormal proalpha1(I) chains accumulated intracellularly in Aga2/+ dermal fibroblasts and were poorly secreted extracellularly. This was associated with the induction of an endoplasmic reticulum stress-specific unfolded protein response involving upregulation of BiP, Hsp47, and Gadd153 with caspases-12 and -3 activation and apoptosis of osteoblasts both in vitro and in vivo. These studies resulted in the identification of a new model for Osteogenesis imperfecta, and identified a role for intracellular modulation of the endoplasmic reticulum stress-associated unfolded protein response machinery toward osteoblast apoptosis during the pathogenesis of disease.


Cancer immune control needs senescence induction by interferon-dependent cell cycle regulator pathways in tumours.

  • Ellen Brenner‎ et al.
  • Nature communications‎
  • 2020‎

Immune checkpoint blockade (ICB)-based or natural cancer immune responses largely eliminate tumours. Yet, they require additional mechanisms to arrest those cancer cells that are not rejected. Cytokine-induced senescence (CIS) can stably arrest cancer cells, suggesting that interferon-dependent induction of senescence-inducing cell cycle regulators is needed to control those cancer cells that escape from killing. Here we report in two different cancers sensitive to T cell-mediated rejection, that deletion of the senescence-inducing cell cycle regulators p16Ink4a/p19Arf (Cdkn2a) or p21Cip1 (Cdkn1a) in the tumour cells abrogates both the natural and the ICB-induced cancer immune control. Also in humans, melanoma metastases that progressed rapidly during ICB have losses of senescence-inducing genes and amplifications of senescence inhibitors. Metastatic cells also resist CIS. Such genetic and functional alterations are infrequent in metastatic melanomas regressing during ICB. Thus, activation of tumour-intrinsic, senescence-inducing cell cycle regulators is required to stably arrest cancer cells that escape from eradication.


The Effect of TNF-α Inhibitors on Nail Psoriasis and Psoriatic Arthritis-Real-World Data from Dermatology Practice.

  • Georgios Kokolakis‎ et al.
  • Journal of personalized medicine‎
  • 2021‎

Patients with psoriatic arthritis (PsA) often develop joint symptoms years after their initial diagnosis of psoriasis disease; therefore, dermatologists should test for and detect PsA early. In this study, we focused on patients with psoriasis with both nail and joint disease being treated with tumor necrosis factor-α inhibitors by dermatologists. We performed a noninterventional, prospective, multicenter, and open-label study to evaluate the effectiveness of adalimumab, etanercept, or infliximab over 24 months of continuous therapy in patients with moderate to severe plaque-type psoriasis (Pso) and PsA. Disease assessments with the Psoriasis Area and Severity Index, Nail Psoriasis Severity Index (NAPSI), joint assessment, Dermatology Life Quality Index (DLQI), and Health Assessment Questionnaire (HAQ) instruments were performed every 3 months for the first year and twice annually thereafter. The cohort included 100 patients with Pso, nail psoriasis, and PsA. A significant reduction of NAPSI was observed 3 months after therapy initiation compared with the baseline (mean ± SD, 22.9 ± 17.8 vs. 33.8 ± 21.4; p < 0.001). Similarly, the mean ± SD number of both tender and swollen joints decreased significantly within the first 3 months of treatment, from 10.8 ± 11.5 to 6.4 ± 10.3 (p < 0.001) and from 6.4 ± 9.5 to 3.1 ± 7.2 (p < 0.001), respectively. Additionally, the distal interphalangeal joint involvement improved throughout the observation time, and DLQI and HAQ scores decreased. Improvements in control of skin, nail, and joint symptoms were seen, as well as in patients' quality of life and functionality. Dermatologists have an important role not only in PsA diagnosis but also in PsA long-term care.


Acute and chronic inflammation alter immunometabolism in a cutaneous delayed-type hypersensitivity reaction (DTHR) mouse model.

  • Laimdota Zizmare‎ et al.
  • Communications biology‎
  • 2022‎

T-cell-driven immune responses are responsible for several autoimmune disorders, such as psoriasis vulgaris and rheumatoid arthritis. Identification of metabolic signatures in inflamed tissues is needed to facilitate novel and individualised therapeutic developments. Here we show the temporal metabolic dynamics of T-cell-driven inflammation characterised by nuclear magnetic resonance spectroscopy-based metabolomics, histopathology and immunohistochemistry in acute and chronic cutaneous delayed-type hypersensitivity reaction (DTHR). During acute DTHR, an increase in glutathione and glutathione disulfide is consistent with the ear swelling response and degree of neutrophilic infiltration, while taurine and ascorbate dominate the chronic phase, suggesting a switch in redox metabolism. Lowered amino acids, an increase in cell membrane repair-related metabolites and infiltration of T cells and macrophages further characterise chronic DTHR. Acute and chronic cutaneous DTHR can be distinguished by characteristic metabolic patterns associated with individual inflammatory pathways providing knowledge that will aid target discovery of specialised therapeutics.


Pemphigus Foliaceus Autoantibodies Induce Redistribution Primarily of Extradesmosomal Desmoglein 1 in the Cell Membrane.

  • Matthias Hiermaier‎ et al.
  • Frontiers in immunology‎
  • 2022‎

The autoimmune dermatosis pemphigus foliaceus (PF) is predominantly caused by IgG autoantibodies against the desmosomal cadherin desmoglein (Dsg) 1. The exact mechanisms that lead to the characteristic epidermal blistering are not yet fully understood. In the present study, we used a variety of biophysical methods to examine the fate of membrane-bound Dsg1 after incubation with PF patients' IgG. Dispase-based dissociation assays confirmed that PF-IgG used for this study reduced intercellular adhesion in a manner dependent on phospholipase C (PLC)/Ca2+ and extracellular signal-regulated kinase (ERK) 1/2 signaling. Atomic force microscopy (AFM) revealed that Dsg1 binding on single molecule level paralleled effects on keratinocyte adhesion under the different conditions. Stimulated emission depletion (STED) super-resolution microscopy was used to investigate the localization of Dsg1 after PF-IgG incubation for 24 h. Under control conditions, Dsg1 was found to be in part co-localized with desmoplakin and thus inside of desmosomes as well as extra-desmosomal along the cell border. Incubation with PF-IgG reduced the extra-desmosomal Dsg1 fraction. In line with this, fluorescence recovery after photobleaching (FRAP) experiments demonstrated a strongly reduced mobility of Dsg1 in the cell membrane after PF-IgG treatment indicating remaining Dsg1 molecules were primarily located inside desmosomes. Mechanistically, experiments confirmed the involvement of PLC/Ca2+ since inhibition of PLC or 1,4,5-trisphosphate (IP3) receptor to reduce cytosolic Ca2+ reverted the effects of PF-IgG on Dsg1 intra-membrane mobility and localization. Taken together, our findings suggest that during the first 24 h PF-IgG induce redistribution predominantly of membrane-bound extradesmosomal Dsg1 in a PLC/Ca2+ dependent manner whereas Dsg1-containing desmosomes remain.


CXCR4 hyperactivation cooperates with TCL1 in CLL development and aggressiveness.

  • Richard Lewis‎ et al.
  • Leukemia‎
  • 2021‎

Aberrant CXCR4 activity has been implicated in lymphoma pathogenesis, disease progression, and resistance to therapies. Using a mouse model with a gain-of-function CXCR4 mutation (CXCR4C1013G) that hyperactivates CXCR4 signaling, we identified CXCR4 as a crucial activator of multiple key oncogenic pathways. CXCR4 hyperactivation resulted in an expansion of transitional B1 lymphocytes, which represent the precursors of chronic lymphocytic leukemia (CLL). Indeed, CXCR4 hyperactivation led to a significant acceleration of disease onset and a more aggressive phenotype in the murine Eµ-TCL1 CLL model. Hyperactivated CXCR4 signaling cooperated with TCL1 to cause a distinct oncogenic transcriptional program in B cells, characterized by PLK1/FOXM1-associated pathways. In accordance, Eµ-TCL1;CXCR4C1013G B cells enriched a transcriptional signature from patients with Richter's syndrome, an aggressive transformation of CLL. Notably, MYC activation in aggressive lymphoma was associated with increased CXCR4 expression. In line with this finding, additional hyperactive CXCR4 signaling in the Eµ-Myc mouse, a model of aggressive B-cell cancer, did not impact survival. In summary, we here identify CXCR4 hyperactivation as a co-driver of an aggressive lymphoma phenotype.


Cysteine-type cathepsins promote the effector phase of acute cutaneous delayed-type hypersensitivity reactions.

  • Johannes Schwenck‎ et al.
  • Theranostics‎
  • 2019‎

Cysteine-type cathepsins such as cathepsin B are involved in various steps of inflammatory processes such as antigen processing and angiogenesis. Here, we uncovered the role of cysteine-type cathepsins in the effector phase of T cell-driven cutaneous delayed-type hypersensitivity reactions (DTHR) and the implication of this role on therapeutic cathepsin B-specific inhibition. Methods: Wild-type, cathepsin B-deficient (Ctsb-/-) and cathepsin Z-deficient (Ctsz-/-) mice were sensitized with 2,4,6-trinitrochlorobenzene (TNCB) on the abdomen and challenged with TNCB on the right ear to induce acute and chronic cutaneous DTHR. The severity of cutaneous DTHR was assessed by evaluating ear swelling responses and histopathology. We performed fluorescence microscopy on tissue from inflamed ears and lymph nodes of wild-type mice, as well as on biopsies from psoriasis patients, focusing on cathepsin B expression by T cells, B cells, macrophages, dendritic cells and NK cells. Cathepsin activity was determined noninvasively by optical imaging employing protease-activated substrate-like probes. Cathepsin expression and activity were validated ex vivo by covalent active site labeling of proteases and Western blotting. Results: Noninvasive in vivo optical imaging revealed strong cysteine-type cathepsin activity in inflamed ears and draining lymph nodes in acute and chronic cutaneous DTHR. In inflamed ears and draining lymph nodes, cathepsin B was expressed by neutrophils, dendritic cells, macrophages, B, T and natural killer (NK) cells. Similar expression patterns were found in psoriatic plaques of patients. The biochemical methods confirmed active cathepsin B in tissues of mice with cutaneous DTHR. Topically applied cathepsin B inhibitors significantly reduced ear swelling in acute but not chronic DTHR. Compared with wild-type mice, Ctsb-/- mice exhibited an enhanced ear swelling response during acute DTHR despite a lack of cathepsin B expression. Cathepsin Z, a protease closely related to cathepsin B, revealed compensatory expression in inflamed ears of Ctsb-/- mice, while cathepsin B expression was reciprocally elevated in Ctsz-/- mice. Conclusion: Cathepsin B is actively involved in the effector phase of acute cutaneous DTHR. Thus, topically applied cathepsin B inhibitors might effectively limit DTHR such as contact dermatitis or psoriasis. However, the cathepsin B and Z knockout mouse experiments suggested a complementary role for these two cysteine-type proteases.


CCR8 leads to eosinophil migration and regulates neutrophil migration in murine allergic enteritis.

  • Frank Blanco-Pérez‎ et al.
  • Scientific reports‎
  • 2019‎

Allergic enteritis (AE) is a gastrointestinal form of food allergy. This study aimed to elucidate cellular and molecular mechanisms of AE using a murine model. To induce AE, BALB/c wild type (WT) mice received intraperitoneal sensitization with ovalbumin (an egg white allergen) plus ALUM and feeding an egg white (EW) diet. Microarray analysis showed enhanced gene expression of CC chemokine receptor (CCR) 8 and its ligand, chemokine CC motif ligand (CCL) 1 in the inflamed jejunum. Histological and FACS analysis showed that CCR8 knock out (KO) mice exhibited slightly less inflammatory features, reduced eosinophil accumulation but accelerated neutrophil accumulation in the jejunums, when compared to WT mice. The concentrations of an eosinophil chemoattractant CCL11 (eotaxin-1), but not of IL-5, were reduced in intestinal homogenates of CCR8KO mice, suggesting an indirect involvement of CCR8 in eosinophil accumulation in AE sites by inducing CCL11 expression. The potential of CCR8 antagonists to treat allergic asthma has been discussed. However, our results suggest that CCR8 blockade may promote neutrophil accumulation in the inflamed intestinal tissues, and not be a suitable therapeutic target for AE, despite the potential to reduce eosinophil accumulation. This study advances our knowledge to establish effective anti-inflammatory strategies in AE treatment.


Platelets Aggregate With Neutrophils and Promote Skin Pathology in Psoriasis.

  • Franziska Herster‎ et al.
  • Frontiers in immunology‎
  • 2019‎

Psoriasis is a frequent systemic inflammatory autoimmune disease characterized primarily by skin lesions with massive infiltration of leukocytes, but frequently also presents with cardiovascular comorbidities. Especially polymorphonuclear neutrophils (PMNs) abundantly infiltrate psoriatic skin but the cues that prompt PMNs to home to the skin are not well-defined. To identify PMN surface receptors that may explain PMN skin homing in psoriasis patients, we screened 332 surface antigens on primary human blood PMNs from healthy donors and psoriasis patients. We identified platelet surface antigens as a defining feature of psoriasis PMNs, due to a significantly increased aggregation of neutrophils and platelets in the blood of psoriasis patients. Similarly, in the imiquimod-induced experimental in vivo mouse model of psoriasis, disease induction promoted PMN-platelet aggregate formation. In psoriasis patients, disease incidence directly correlated with blood platelet counts and platelets were detected in direct contact with PMNs in psoriatic but not healthy skin. Importantly, depletion of circulating platelets in mice in vivo ameliorated disease severity significantly, indicating that both PMNs and platelets may be relevant for psoriasis pathology and disease severity.


Identification of C/EBPβ target genes in ALK+ anaplastic large cell lymphoma (ALCL) by gene expression profiling and chromatin immunoprecipitation.

  • Irina Bonzheim‎ et al.
  • PloS one‎
  • 2013‎

C/EBPβ (CCAAT enhancer binding protein) is a transcription factor that plays a crucial role in survival and transformation of ALK+ anaplastic large cell lymphoma (ALCL). The aim of this study was to identify the downstream targets of C/EBPβ responsible for ALK-mediated oncogenesis. C/EBPβ was knocked down in ALK+ ALCL cell lines with a C/EBPβ-shRNA, followed by gene expression profiling (GEP). GEP analysis revealed a reproducible signature of genes that were significantly regulated by C/EBPβ. Classification into biological categories revealed overrepresentation of genes involved in the immune response, apoptosis and cell proliferation. Transcriptional regulation by C/EBPβ was found in 6 of 11 (BCL2A1, G0S2, TRIB1, S100A9, DDX21 and DDIT4) genes investigated by chromatin immunoprecipitation. We demonstrated that BCL2A1, G0S2 and DDX21 play a crucial role in survival and proliferation of ALK+ ALCL cells. DDX21, a gene involved in rRNA biogenesis, was found differentially overexpressed in primary ALK+ ALCL cases. All three candidate genes were validated in primary ALCL cases by either immunohistochemistry or RT-qPCR. In conclusion, we identified and validated several key C/EBPβ-regulated genes with major impact on survival and cell growth in ALK+ ALCL, supporting the central role of C/EBPβ in ALK-mediated oncogenesis.


IL-4 abrogates T(H)17 cell-mediated inflammation by selective silencing of IL-23 in antigen-presenting cells.

  • Emmanuella Guenova‎ et al.
  • Proceedings of the National Academy of Sciences of the United States of America‎
  • 2015‎

Interleukin 4 (IL-4) can suppress delayed-type hypersensitivity reactions (DTHRs), including organ-specific autoimmune diseases in mice and humans. Despite the broadly documented antiinflammatory effect of IL-4, the underlying mode of action remains incompletely understood, as IL-4 also promotes IL-12 production by dendritic cells (DCs) and IFN-γ-producing T(H)1 cells in vivo. Studying the impact of IL-4 on the polarization of human and mouse DCs, we found that IL-4 exerts opposing effects on the production of either IL-12 or IL-23. While promoting IL-12-producing capacity of DCs, IL-4 completely abrogates IL-23. Bone marrow chimeras proved that IL-4-mediated suppression of DTHRs relies on the signal transducer and activator of transcription 6 (STAT6)-dependent abrogation of IL-23 in antigen-presenting cells. Moreover, IL-4 therapy attenuated DTHRs by STAT6- and activating transcription factor 3 (ATF3)-dependent suppression of the IL-23/T(H)17 responses despite simultaneous enhancement of IL-12/TH1 responses. As IL-4 therapy also improves psoriasis in humans and suppresses IL-23/T(H)17 responses without blocking IL-12/T(H)1, selective IL-4-mediated IL-23/T(H)17 silencing is promising as treatment against harmful inflammation, while sparing the IL-12-dependent T(H)1 responses.


Nutritional control of IL-23/Th17-mediated autoimmune disease through HO-1/STAT3 activation.

  • Jürgen Brück‎ et al.
  • Scientific reports‎
  • 2017‎

The nutritional curcumin (CUR) is beneficial in cell-mediated autoimmune diseases. The molecular mechanisms underlying this food-mediated silencing of inflammatory immune responses are poorly understood. By investigating antigen-specific immune responses we found that dietary CUR impairs the differentiation of Th1/Th17 cells in vivo during encephalomyelitis and instead promoted Th2 cells. In contrast, feeding CUR had no inhibitory effect on ovalbumin-induced airway inflammation. Mechanistically, we found that CUR induces an anti-inflammatory phenotype in dendritic cells (DC) with enhanced STAT3 phosphorylation and suppressed expression of Il12b and Il23a. On the molecular level CUR readily induced NRF2-sensitive heme oxygenase 1 (HO-1) mRNA and protein in LPS-activated DC. HO-1 enhanced STAT3 phosphorylation, which enriched to Il12b and Il23a loci and negatively regulated their transcription. These findings demonstrate the underlying mechanism through which a nutritional can interfere with the immune response. CUR silences IL-23/Th17-mediated pathology by enhancing HO-1/STAT3 interaction in DC.


Cre/lox-assisted non-invasive in vivo tracking of specific cell populations by positron emission tomography.

  • Martin Thunemann‎ et al.
  • Nature communications‎
  • 2017‎

Many pathophysiological processes are associated with proliferation, migration or death of distinct cell populations. Monitoring specific cell types and their progeny in a non-invasive, longitudinal and quantitative manner is still challenging. Here we show a novel cell-tracking system that combines Cre/lox-assisted cell fate mapping with a thymidine kinase (sr39tk) reporter gene for cell detection by positron emission tomography (PET). We generate Rosa26-mT/sr39tk PET reporter mice and induce sr39tk expression in platelets, T lymphocytes or cardiomyocytes. As proof of concept, we demonstrate that our mouse model permits longitudinal PET imaging and quantification of T-cell homing during inflammation and cardiomyocyte viability after myocardial infarction. Moreover, Rosa26-mT/sr39tk mice are useful for whole-body characterization of transgenic Cre mice and to detect previously unknown Cre activity. We anticipate that the Cre-switchable PET reporter mice will be broadly applicable for non-invasive long-term tracking of selected cell populations in vivo.Non-invasive cell tracking is a powerful method to visualize cells in vivo under physiological and pathophysiological conditions. Here Thunemann et al. generate a mouse model for in vivo tracking and quantification of specific cell types by combining a PET reporter gene with Cre-dependent activation that can be exploited for any cell population for which a Cre mouse line is available.


Loss of Endometrial Sodium Glucose Cotransporter SGLT1 is Detrimental to Embryo Survival and Fetal Growth in Pregnancy.

  • Madhuri S Salker‎ et al.
  • Scientific reports‎
  • 2017‎

Embryo implantation requires a hospitable uterine environment. A key metabolic change that occurs during the peri-implantation period, and throughout early pregnancy, is the rise in endometrial glycogen content. Glycogen accumulation requires prior cellular uptake of glucose. Here we show that both human and murine endometrial epithelial cells express the high affinity Na+-coupled glucose carrier SGLT1. Ussing chamber experiments revealed electrogenic glucose transport across the endometrium in wild type (Slc5a1 +/+) but not in SGLT1 deficient (Slc5a1 -/-) mice. Endometrial glycogen content, litter size and weight of offspring at birth were significantly lower in Slc5a1 -/- mice. In humans, SLC5A1 expression was upregulated upon decidualization of primary endometrial stromal cells. Endometrial SLC5A1 expression during the implantation window was attenuated in patients with recurrent pregnancy loss when compared with control subjects. Our findings reveal a novel mechanism establishing adequate endometrial glycogen stores for pregnancy. Disruption of this histiotrophic pathway leads to adverse pregnancy outcome.


In vivo imaging enables high resolution preclinical trials on patients' leukemia cells growing in mice.

  • Nadia Terziyska‎ et al.
  • PloS one‎
  • 2012‎

Xenograft mouse models represent helpful tools for preclinical studies on human tumors. For modeling the complexity of the human disease, primary tumor cells are by far superior to established cell lines. As qualified exemplary model, patients' acute lymphoblastic leukemia cells reliably engraft in mice inducing orthotopic disseminated leukemia closely resembling the disease in men. Unfortunately, disease monitoring of acute lymphoblastic leukemia in mice is hampered by lack of a suitable readout parameter.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: