Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 14 papers out of 14 papers

miR-488-3p Protects Cardiomyocytes against Doxorubicin-Induced Cardiotoxicity by Inhibiting CyclinG1.

  • Mingjing Yan‎ et al.
  • Oxidative medicine and cellular longevity‎
  • 2022‎

To investigate the protective effects and regulatory mechanism of miR-488-3p on doxorubicin-induced cardiotoxicity.


miR-154-5p Functions as an Important Regulator of Angiotensin II-Mediated Heart Remodeling.

  • Que Wang‎ et al.
  • Oxidative medicine and cellular longevity‎
  • 2019‎

Chronic hypertension, valvular heart disease, and heart infarction cause cardiac remodeling and potentially lead to a series of pathological and structural changes in the left ventricular myocardium and a progressive decrease in heart function. Angiotensin II (AngII) plays a key role in the onset and development of cardiac remodeling. Many microRNAs (miRNAs), including miR-154-5p, may be involved in the development of cardiac remolding, but the underlying molecular mechanisms remain unclear. We aimed to characterize the function of miR-154-5p and reveal its mechanisms in cardiac remodeling induced by AngII. First, angiotensin II led to concurrent increases in miR-154-5p expression and cardiac remodeling in adult C57BL/6J mice. Second, overexpression of miR-154-5p to a level similar to that induced by AngII was sufficient to trigger cardiomyocyte hypertrophy and apoptosis, which is associated with profound activation of oxidative stress and inflammation. Treatment with a miR-154-5p inhibitor noticeably reversed these changes. Third, miR-154-5p directly inhibited arylsulfatase B (Arsb) expression by interacting with its 3'-UTR and promoted cardiomyocyte hypertrophy and apoptosis. Lastly, the angiotensin type 1 receptor blocker telmisartan attenuated AngII-induced cardiac hypertrophy, apoptosis, and fibrosis by blocking the increase in miR-154-5p expression. Moreover, upon miR-154-5p overexpression in isolated cardiomyocytes, the protective effect of telmisartan was partially abolished. Based on these results, increased cardiac miR-154-5p expression is both necessary and sufficient for AngII-induced cardiomyocyte hypertrophy and apoptosis, suggesting that the upregulation of miR-154-5p may be a crucial pathological factor and a potential therapeutic target for cardiac remodeling.


Meta-analysis of expression and methylation signatures indicates a stress-related epigenetic mechanism in multiple neuropsychiatric disorders.

  • Kaiyi Zhu‎ et al.
  • Translational psychiatry‎
  • 2019‎

Similar environmental risk factors have been implicated in different neuropsychiatric disorders (including major psychiatric and neurodegenerative diseases), indicating the existence of common epigenetic mechanisms underlying the pathogenesis shared by different illnesses. To investigate such commonality, we applied an unsupervised computational approach identifying several consensus co-expression and co-methylation signatures from a data cohort of postmortem prefrontal cortex (PFC) samples from individuals with six different neuropsychiatric disorders-schizophrenia, bipolar disorder, major depression, alcoholism, Alzheimer's and Parkinson's-as well as healthy controls. Among our results, we identified a pair of strongly interrelated co-expression and co-methylation (E-M) signatures showing consistent and significant disease association in multiple types of disorders. This E-M signature was enriched for interneuron markers, and we further demonstrated that it is unlikely for this enrichment to be due to varying subpopulation abundance of normal interneurons across samples. Moreover, gene set enrichment analysis revealed overrepresentation of stress-related biological processes in this E-M signature. Our integrative analysis of expression and methylation profiles, therefore, suggests a stress-related epigenetic mechanism in the brain, which could be associated with the pathogenesis of multiple neuropsychiatric diseases.


A community effort to create standards for evaluating tumor subclonal reconstruction.

  • Adriana Salcedo‎ et al.
  • Nature biotechnology‎
  • 2020‎

Tumor DNA sequencing data can be interpreted by computational methods that analyze genomic heterogeneity to infer evolutionary dynamics. A growing number of studies have used these approaches to link cancer evolution with clinical progression and response to therapy. Although the inference of tumor phylogenies is rapidly becoming standard practice in cancer genome analyses, standards for evaluating them are lacking. To address this need, we systematically assess methods for reconstructing tumor subclonality. First, we elucidate the main algorithmic problems in subclonal reconstruction and develop quantitative metrics for evaluating them. Then we simulate realistic tumor genomes that harbor all known clonal and subclonal mutation types and processes. Finally, we benchmark 580 tumor reconstructions, varying tumor read depth, tumor type and somatic variant detection. Our analysis provides a baseline for the establishment of gold-standard methods to analyze tumor heterogeneity.


Inhibition of TLR4 prevents hippocampal hypoxic-ischemic injury by regulating ferroptosis in neonatal rats.

  • Kaiyi Zhu‎ et al.
  • Experimental neurology‎
  • 2021‎

Inflammation and cell death play important roles in the pathogenesis of hypoxic-ischemic brain damage (HIBD). Toll-like receptor 4 (TLR4) triggers the activation of the inflammatory pathway. Ferroptosis, a newly identified type of regulated cell death, is implicated in various diseases involving neuronal injury. However, the role of ferroptosis in HIBD has not been elucidated. The objectives of this study were to explore the function and mechanism of TLR4 in neuronal ferroptosis in the context of HIBD. A neonatal rat model of hypoxia-ischemia (HI) and a cell model of oxygen-glucose deprivation (OGD) were employed. TAK-242, a TLR4-specific antagonist, was used to evaluate the effect of TLR4 on neuronal ferroptosis in vivo. A TAK-242 inhibitor and a p38 inhibitor (SB203580) were administered to HT22 hippocampal neurons to explore the association between TLR4 in inflammation and ferroptosis in vitro. The effects of TLR4 on ferroptosis were assessed by the Western blot, real-time PCR, immunofluorescence staining, cell viability and transmission electron microscopy (TEM) assays. HI insult significantly upregulated the TLR4, increased the p53 level, reduced the SLC7A11 and GPX4 levels, and caused mitochondrial damage, thereby inducing neuronal ferroptosis in the hippocampus. Inhibition of TLR4 inhibited the expression of ferroptosis-related proteins, decreased the expression of ferroptosis-related genes and the proinflammatory milieu, attenuated oxidative stress and mitochondrial injury and, finally, ameliorated the activation of hippocampal neuronal ferroptosis following HIBD. Consistent with the results of these in vivo experiments, TLR4 inhibition also attenuated OGD-induced ferroptosis by suppressing oxidative stress and p38MAPK signaling, ultimately increasing neuronal cell viability. Finally, the in vitro and in vivo results demonstrated that TAK-242 exerted neuroprotective and antiferroptotic effects by suppressing TLR4-p38 MAPK signaling. TLR4 activation induced neuronal ferroptosis following both HIBD and OGD. Inhibition of TLR4 attenuated oxidative stress-induced damage, decreased the activation of ferroptosis, and attenuated neuroinflammation following HIBD. In this study, we demonstrated that the inhibition of TLR4-p38 MAPK signaling modulates HIBD- or OGD-induced ferroptosis in neuronal cells and may play a novel role in brain homeostasis.


Glycyrrhizin Attenuates Hypoxic-Ischemic Brain Damage by Inhibiting Ferroptosis and Neuroinflammation in Neonatal Rats via the HMGB1/GPX4 Pathway.

  • Kaiyi Zhu‎ et al.
  • Oxidative medicine and cellular longevity‎
  • 2022‎

With unknown etiology and limited treatment options, neonatal hypoxic-ischemic brain damage (HIBD) remains a major cause of mortality in newborns. Ferroptosis, a recently discovered type of cell death triggered by lipid peroxidation, is closely associated with HIBD. High-mobility group box 1 (HMGB1), a molecule associated with inflammation damage, can induce neuronal death in HIBD. However, it remains unknown whether HMGB1 contributes to neuronal ferroptosis in patients with HIBD. Herein, glycyrrhizin (GL), an HMGB1 inhibitor, was used to investigate the relationship between ferroptosis and HMGB1. RAS-selective lethal 3(RSL3), a ferroptosis agonist, was administered to further confirm the changes in the signaling pathway between HMGB1 and ferroptosis. Western blot analysis revealed that GL markedly suppressed the expression of HMGB1 and increased the level of GPX4 in the context of HIBD. We observed changes in neuronal ultrastructure via transmission electron microscopy to further confirm the occurrence of ferroptosis. Real-time PCR indicated that GL inhibited the expression of ferroptosis-related genes and inflammatory factors. Immunofluorescence and immunohistochemistry staining confirmed GL inhibition of neuronal damage and ferroptosis in HIBD associated with GPX4 and ROS. GL not only inhibited ferroptosis induced by RSL3 and oxygen-glucose deprivation in vitro but also inhibited ferroptosis induced by HIBD in vivo. More importantly, GL may improve oxidative stress imbalance and mitochondrial damage, alleviate the downstream production of inflammatory factors, and ultimately reduce ferroptosis and damage to cortical neurons following HIBD via the HMGB1/GPX4 pathway. In conclusion, we showed for the first time that GL could suppress the occurrence of neuronal ferroptosis and reduce neuronal loss in HIBD via the HMGB1/GPX4 pathway. These findings highlight the potential of HMGB1 signaling antagonists to treat neuronal damage by suppressing ferroptosis, provide new and unique insights into GL as a neuroprotective agent, and suggest new prevention and treatment strategies for HIBD.


Polypeptide Globular Adiponectin Ameliorates Hypoxia/Reoxygenation-Induced Cardiomyocyte Injury by Inhibiting Both Apoptosis and Necroptosis.

  • Kaiyi Zhu‎ et al.
  • Journal of immunology research‎
  • 2021‎

Adiponectin is a small peptide secreted and a key component of the endocrine system and immune system. Although globular adiponectin protects myocardial ischemia/reperfusion-induced cardiomyocyte injury, the protective mechanisms remain largely unresolved. Using a neonatal rat ventricular myocyte hypoxia/reoxygenation model, we investigated the role of its potential mechanisms of necroptosis in globular adiponectin-mediated protection in hypoxia/reoxygenation-induced cardiomyocyte injury as compared to apoptosis. We found that globular adiponectin treatment attenuated cardiomyocyte injury as indicated by increased cell viability and reduced lactate dehydrogenase release following hypoxia/reoxygenation. Immunofluorescence staining and Western blotting demonstrated that both necroptosis and apoptosis were triggered by hypoxia/reoxygenation and diminished by globular adiponectin. Necrostatin-1 (RIP1-specific inhibitor) and Z-VAD-FMK (pan-caspase inhibitor) only mimicked the inhibition of necroptosis and apoptosis, respectively, by globular adiponectin in hypoxia/reoxygenation-treated cardiomyocytes. Globular adiponectin attenuated reactive oxygen species production, oxidative damage, and p38MAPK and NF-κB signaling, all important for necroptosis and apoptosis. Collectively, our study suggests that globular adiponectin inhibits hypoxia/reoxygenation-induced necroptosis and apoptosis in cardiomyocytes probably by reducing oxidative stress and interrupting p38MAPK signaling.


High-mobility Group Box 1 Contributes to Hypoxic-Ischemic Brain Damage by Facilitating Imbalance of Microglial Polarization through RAGE-PI3K/Akt Pathway in Neonatal Rats.

  • Yanyan Sun‎ et al.
  • International journal of medical sciences‎
  • 2022‎

High mobility group box 1 (HMGB1) is a damage-associated molecular pattern integral for hypoxic-ischemic brain damage (HIBD) in neonatal rats since it regulates the phenotypic polarization of microglia, as depicted in our previous studies. Since this mechanism is not clear, this study establishes an oxygen-glucose deprivation (OGD) model of highly aggressively proliferating immortalized microglia while modulating the expression of HMGB1 by plasmid transfection. The M1/M2 microglial phenotype and receptor for advanced glycation end products-phosphoinositide 3-kinase/Akt (RAGE-PI3K/Akt) activation were evaluated, showing that HMGB1 promoted the polarization of microglia to the M1 phenotype under OGD conditions. Meanwhile, RAGE, which is the main receptor of HMGB1, was activated, and phosphorylation of PI3K/Akt was upregulated. However, knockdown or inhibition of HMGB1 can weaken the activation of RAGE and phosphorylation of PI3K/Akt. The inhibition of HMGB1 or RAGE-PI3K/Akt attenuated microglial polarization to the M1 phenotype and promoted M2 microglial polarization instead, reducing the release of pro-inflammatory factors. In the neonatal HIBD rat model, the RAGE-PI3K/Akt pathway was activated seven days after hypoxic-ischemic (HI) exposure, and the activation was partly inhibited after pretreatment with the HMGB1 inhibitor. Concurrently, inhibition of the HMGB1-RAGE-PI3K/Akt pathway alleviated neuronal damage in the hippocampus. These findings verified that HMGB1 could lead to an imbalance in M1/M2 microglial polarization through activation of the RAGE-PI3K/Akt signaling pathway under OGD conditions. Obstructing this pathway may attenuate the imbalanced polarization of microglia, enabling its utilization as a therapeutic strategy against brain injury in HIBD.


Cardioprotective effects of Schisantherin A against isoproterenol-induced acute myocardial infarction through amelioration of oxidative stress and inflammation via modulation of PI3K-AKT/Nrf2/ARE and TLR4/MAPK/NF-κB pathways in rats.

  • Xiaolong Mi‎ et al.
  • BMC complementary medicine and therapies‎
  • 2023‎

The scientific community is concerned about cardiovascular disease mortality and morbidity, especially myocardial infarction (MI). Schisantherin A (SCA), a dibenzocyclooctadiene lignan monomer found in S. chinensis fruits has cardiovascular advantages such as increasing NO production in isolated rat thoracic aorta and reducing heart damage caused by ischemia-reperfusion (I/R) through decreasing apoptosis. The present study was undertaken to explore the potential effects of SCA on ISO-induced myocardial infarction in rats.


Effects of HMGB1/RAGE/cathespin B inhibitors on alleviating hippocampal injury by regulating microglial pyroptosis and caspase activation in neonatal hypoxic-ischemic brain damage.

  • Kaiyi Zhu‎ et al.
  • Journal of neurochemistry‎
  • 2023‎

Microglia play a crucial role in regulating neuroinflammation in the pathogenesis of neonatal hypoxic-ischemic brain damage (HIBD). Pyroptosis, an inflammatory form of programmed cell death, has been implicated in HIBD; however, its underlying mechanism remains unclear. We previously demonstrated that high-mobility group box 1 protein (HMGB1) mediates neuroinflammation and microglial damage in HIBD. In this study, we aimed to investigate the association between HMGB1 and microglial pyroptosis and elucidate the mechanism involved in rats with HIBD (both sexes were included) and in BV2 microglia subjected to oxygen-glucose deprivation. Our results showed that HMGB1 inhibition by glycyrrhizin (20 mg/kg) reduced the expression of microglial pyroptosis-related proteins, including caspase-1, the N-terminus fragment of gasdermin D (N-GSDMD), and pyroptosis-related inflammatory factors, such as interleukin (IL) -1β and IL-18. Moreover, HMGB1 inhibition resulted in reduced neuronal damage in the hippocampus 72 h after HIBD and ultimately improved neurobehavior during adulthood, as evidenced by reduced escape latency and path length, as well as increased time and distance spent in the target quadrant during the Morris water maze test. These results revealed that HIBD-induced pyroptosis is mediated by HMGB1/receptor for advanced glycation end products (RAGE) signaling (inhibition by FPS-ZM1, 1 mg/kg) and the activation of cathespin B (cat B). Notably, cat B inhibition by CA074-Me (5 mg/kg) also reduced hippocampal neuronal damage by suppressing microglial pyroptosis, thereby ameliorating learning and memory impairments caused by HIBD. Lastly, we demonstrated that microglial pyroptosis may contribute to neuronal damage through the HMGB1/RAGE/cat B signaling pathway in vitro. In conclusion, these results suggest that HMGB1/RAGE/cat B inhibitors can alleviate hippocampal injury by regulating microglial pyroptosis and caspase activation in HIBD, thereby reducing the release of proinflammatory mediators that destroy hippocampal neurons and induce spatial memory impairments.


Multi-omic profiling of the developing human cerebral cortex at the single-cell level.

  • Kaiyi Zhu‎ et al.
  • Science advances‎
  • 2023‎

The cellular complexity of the human brain is established via dynamic changes in gene expression throughout development that is mediated, in part, by the spatiotemporal activity of cis-regulatory elements (CREs). We simultaneously profiled gene expression and chromatin accessibility in 45,549 cortical nuclei across six broad developmental time points from fetus to adult. We identified cell type-specific domains in which chromatin accessibility is highly correlated with gene expression. Differentiation pseudotime trajectory analysis indicates that chromatin accessibility at CREs precedes transcription and that dynamic changes in chromatin structure play a critical role in neuronal lineage commitment. In addition, we mapped cell type-specific and temporally specific genetic loci implicated in neuropsychiatric traits, including schizophrenia and bipolar disorder. Together, our results describe the complex regulation of cell composition at critical stages in lineage determination and shed light on the impact of spatiotemporal alterations in gene expression on neuropsychiatric disease.


Cardiac Shock Wave Therapy Alleviates Hypoxia/Reoxygenation-Induced Myocardial Necroptosis by Modulating Autophagy.

  • Quan Qiu‎ et al.
  • BioMed research international‎
  • 2021‎

Regulated necrosis (necroptosis) is crucially involved in cardiac ischaemia-reperfusion injury (MIRI). The aim of our study is to investigate whether shock wave therapy (SWT) is capable of exerting protective effects by inhibiting necroptosis during myocardial ischaemia-reperfusion (I/R) injury and the possible role of autophagy in this process. We established a hypoxia/reoxygenation (H/R) model in vitro using HL-1 cells to simulate MIRI. MTS assays and LDH cytotoxicity assay were performed to measure cell viability and cell damage. Annexin V/PI staining was used to determine apoptosis and necrosis. Western blotting was performed to assess the changes in cell signaling pathways associated with autophagy, necroptosis, and apoptosis. Reactive oxygen species (ROS) production was detected using DHE staining. Autophagosome generation and degradation (autophagic flux) were analysed using GFP and RFP tandemly tagged LC3 (tfLC3). HL-1 cells were then transfected with p62/SQSTM1 siRNA in order to analyse its role in cardioprotection. Our results revealed that SWT increased cell viability in the H/R model and decreased receptor-interacting serine/threonine-protein kinase 1 (RIPK1) and RIPK3 expression. ROS production was also inhibited by SWT. Moreover, SWT decreased Beclin1 expression and the ratio of LC3-II/LC3-I following H/R. Simultaneously, in the tfLC3 assay, the SWT provoked a decrease in the cumulative autophagosome abundance. siRNA-mediated knockdown of p62 attenuated H/R-induced necroptosis, and SWT did not exert additive effects. Taken together, SWT ameliorated H/R injury by inhibiting necroptosis. SWT also relieved the blockade of autophagic flux in response to H/R injury. The restoration of autophagic flux by SWT might contribute to its cardioprotective effect on necroptosis following H/R injury.


Adiponectin Protects Hypoxia/Reoxygenation-Induced Cardiomyocyte Injury by Suppressing Autophagy.

  • Jia Guo‎ et al.
  • Journal of immunology research‎
  • 2022‎

Adiponectin is a cytokine produced by adipocytes and acts as a potential cardioprotective agent and plays an important role in myocardial ischemia/reperfusion injury. In a myocardial hypoxia/reoxygenation model using neonatal rat ventricular myocytes, we investigated the contribution of adiponectin-mediated autophagy to its cardioprotective effects. Cardiomyocytes were exposed to hypoxia/reoxygenation pretreated with or without adiponectin in the presence of absence of rapamycin. Cell viability was analyzed using the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide method. Western blotting assay was used to determine the expression levels of microtubule-associated proteins 1A/1B light chain 3B (LC3B), adenosine monophosphate-activated protein kinase (AMPK), mammalian target of rapamycin (mTOR), p62/sequestosome 1, unc-51 like autophagy activating kinase 1 (ULK1), and Beclin-1. Autophagosome formation was detected by monodansylcadaverine staining. We found that hypoxia induced a time dependent decline in cardiomyocyte viability, and increase in autophagy and reoxygenation further augmented hypoxia-induced autophagy induction and consequently reduced cell viability. Adiponectin treatment alleviated hypoxia/reoxygenation-induced cellular damage and autophagy in cardiomyocytes. Adiponectin treatment also attenuated hypoxia/reoxygenation-promoted cardiomyocyte autophagy even in the presence of another autophagy stimulator rapamycin in part by inhibiting vacuolar hydron-adenosine triphosphatase. Additionally, autophagy suppression by adiponectin during hypoxia/reoxygenation was associated with the attenuated phosphorylation of AMPK and ULK1, augmented phosphorylation of mTOR, and the reduced protein expression levels of Beclin-1 in cardiomyocytes. Taken together, these results suggest that adiponectin protects ischemia/reperfusion-induced cardiomyocytes by suppressing autophagy in part through AMPK/mTOR/ULK1/Beclin-1 signaling pathway.


Acetyl-CoA carboxylase inhibitor increases LDL-apoB production rate in NASH with cirrhosis: prevention by fenofibrate.

  • Mohamad Dandan‎ et al.
  • Journal of lipid research‎
  • 2023‎

Treatment with acetyl-CoA carboxylase inhibitors (ACCi) in nonalcoholic steatohepatitis (NASH) may increase plasma triglycerides (TGs), with variable changes in apoB concentrations. ACC is rate limiting in de novo lipogenesis and regulates fatty acid oxidation, making it an attractive therapeutic target in NASH. Our objectives were to determine the effects of the ACCi, firsocostat, on production rates of plasma LDL-apoB in NASH and the effects of combined therapy with fenofibrate. Metabolic labeling with heavy water and tandem mass spectrometric analysis of LDL-apoB enrichments was performed in 16 NASH patients treated with firsocostat for 12 weeks and in 29 NASH subjects treated with firsocostat and fenofibrate for 12 weeks. In NASH on firsocostat, plasma TG increased significantly by 17% from baseline to week 12 (P = 0.0056). Significant increases were also observed in LDL-apoB fractional replacement rate (baseline to week 12: 31 ± 20.2 to 46 ± 22.6%/day, P = 0.03) and absolute synthesis rate (ASR) (30.4-45.2 mg/dl/day, P = 0.016) but not plasma apoB concentrations. The effect of firsocostat on LDL-apoB ASR was restricted to patients with cirrhosis (21.0 ± 9.6 at baseline and 44.2 ± 17 mg/dl/day at week 12, P = 0.002, N = 8); noncirrhotic patients did not change (39.8 ± 20.8 and 46.3 ± 14.8 mg/dl/day, respectively, P = 0.51, N = 8). Combination treatment with fenofibrate and firsocostat prevented increases in plasma TG, LDL-apoB fractional replacement rate, and ASR. In summary, in NASH with cirrhosis, ACCi treatment increases LDL-apoB100 production rate and this effect can be prevented by concurrent fenofibrate therapy.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: