Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 20 papers out of 176 papers

HMGB1 cytoplasmic translocation in patients with acute liver failure.

  • Rong-Rong Zhou‎ et al.
  • BMC gastroenterology‎
  • 2011‎

High-mobility group box 1 (HMGB1) is a late mediator of lethal systemic inflammation. Acute liver failure (ALF) has been shown to trigger systemic inflammation in clinical and animal studies. To evaluate the possibility of HMGB1 cytoplasmic translocation in ALF, we determined whether HMGB1 is released in hepatocytes and end organ in patients with liver failure/injury.


Transcriptional maturation of the mouse auditory forebrain.

  • Troy A Hackett‎ et al.
  • BMC genomics‎
  • 2015‎

The maturation of the brain involves the coordinated expression of thousands of genes, proteins and regulatory elements over time. In sensory pathways, gene expression profiles are modified by age and sensory experience in a manner that differs between brain regions and cell types. In the auditory system of altricial animals, neuronal activity increases markedly after the opening of the ear canals, initiating events that culminate in the maturation of auditory circuitry in the brain. This window provides a unique opportunity to study how gene expression patterns are modified by the onset of sensory experience through maturity. As a tool for capturing these features, next-generation sequencing of total RNA (RNAseq) has tremendous utility, because the entire transcriptome can be screened to index expression of any gene. To date, whole transcriptome profiles have not been generated for any central auditory structure in any species at any age. In the present study, RNAseq was used to profile two regions of the mouse auditory forebrain (A1, primary auditory cortex; MG, medial geniculate) at key stages of postnatal development (P7, P14, P21, adult) before and after the onset of hearing (~P12). Hierarchical clustering, differential expression, and functional geneset enrichment analyses (GSEA) were used to profile the expression patterns of all genes. Selected genesets related to neurotransmission, developmental plasticity, critical periods and brain structure were highlighted. An accessible repository of the entire dataset was also constructed that permits extraction and screening of all data from the global through single-gene levels. To our knowledge, this is the first whole transcriptome sequencing study of the forebrain of any mammalian sensory system. Although the data are most relevant for the auditory system, they are generally applicable to forebrain structures in the visual and somatosensory systems, as well.


Biological Analysis of Gene Expression and Clinical Variables Suggest FZD1 as a Novel Biomarker for Patients with Kashin-Beck Disease, an Endemic Osteoarthritis in China.

  • Xi Wang‎ et al.
  • Disease markers‎
  • 2019‎

Clinical variables contribute to the severity of Kashin-Beck disease (KBD). However, it is unclear if there is a correlation between gene expression and clinical variables. Peripheral blood samples were collected from 100 patients with KBD and 100 healthy controls from KBD-endemic areas to identify differentially expressed genes in KBD. Correlation analysis and multiple logistic regression analysis were performed using gene expression and clinical parameters. Immunohistochemistry (IHC) was used to detect the expression of related proteins in articular cartilage tissues. Thirty-nine differentially expressed genes were identified in patients with KBD. Nine differentially expressed genes were correlated with the metacarpal length/metacarpal breadth index. FZD1 was identified as having statistical significance in establishing the regression model of clinical parameters and gene expression. FZD1 expression levels were remarkably reduced in patients with KBD. Our results indicate that FZD1 could be involved in the pathological process of phalanges tuberositas and brachydactylia and may provide new insight into the pathogenesis of articular cartilage destruction observed in patients with KBD.


DDX3X regulates cell survival and cell cycle during mouse early embryonic development.

  • Qian Li‎ et al.
  • Journal of biomedical research‎
  • 2014‎

DDX3X is a highly conserved DEAD-box RNA helicase that participates in RNA transcription, RNA splicing, and mRNA transport, translation, and nucleo-cytoplasmic transport. It is highly expressed in metaphase II (MII) oocytes and is the predominant DDX3 variant in the ovary and embryo. However, whether it is important in mouse early embryo development remains unknown. In this study, we investigated the function of DDX3X in early embryogenesis by cytoplasmic microinjection with its siRNA in zygotes or single blastomeres of 2-cell embryos. Our results showed that knockdown of Ddx3x in zygote cytoplasm led to dramatically diminished blastocyst formation, reduced cell numbers, and an increase in the number of apoptotic cells in blastocysts. Meanwhile, there was an accumulation of p53 in RNAi blastocysts. In addition, the ratio of cell cycle arrest during 2-cell to 4-cell transition increased following microinjection of Ddx3x siRNA into single blastomeres of 2-cell embryos compared with control. These results suggest that Ddx3x is an essential gene associated with cell survival and cell cycle control in mouse early embryos, and thus plays key roles in normal embryo development.


Molecular heterogeneity of head and neck squamous cell carcinoma defined by next-generation sequencing.

  • Pan Zhang‎ et al.
  • The American journal of pathology‎
  • 2014‎

Head and neck squamous cell carcinoma (HNSCC) can be divided into two different clinical entities based on their association with high-risk subtypes of human papilloma virus (HPV16 and HPV18). Dissimilarities in prognosis and molecular profiles have attracted much attention in recent years, in part because of increasing rates of HPV infection in HNSCC; however, the underlying mechanisms and detailed genetic profiles that set these tumors apart are still elusive. To elucidate oncogenic pathways in HNSCC with and without HPV infection, we used targeted next-generation sequencing to interrogate single-nucleotide polymorphisms (SNPs) in 50 cancer-related genes. We detected SNPs in 25 of these genes from HNSCC tissue specimens with and without HPV infection. In 5 of the 25 genes, variant patterns were similar regardless of HPV infection status. A greater number of sequence variants in genes from the tyrosine kinase receptors and their associated pathways were preferentially present in HPV(+) specimens. SNPs in genes related to tumor-suppressor functions were more prevalent in HPV(-) HNSCC specimens. The observations may help to elucidate mechanisms involved in the molecular pathogenesis of two clinically diverse subclasses of HNSCC. Over-representation of SNPs in either HPV(+) or HPV(-) HNSCC is another indicator of potentially actionable sequence variants for targeted therapy.


Regulation of extracellular signal-regulated kinase 1/2 influences hippocampal neuronal survival in a rat model of diabetic cerebral ischemia.

  • Yaning Zhao‎ et al.
  • Neural regeneration research‎
  • 2014‎

Activation of extracellular signal-regulated kinase 1/2 has been demonstrated in acute brain ischemia. We hypothesized that activated extracellular signal-regulated kinase 1/2 can protect hippocampal neurons from injury in a diabetic model after cerebral ischemia/reperfusion. In this study, transient whole-brain ischemia was induced by four-vessel occlusion in normal and diabetic rats, and extracellular signal-regulated kinase 1/2 inhibitor (U0126) was administered into diabetic rats 30 minutes before ischemia as a pretreatment. Results showed that the number of surviving neurons in the hippocampal CA1 region was reduced, extracellular signal-regulated kinase 1/2 phosphorylation and Ku70 activity were decreased, and pro-apoptotic Bax expression was upregulated after intervention using U0126. These findings demonstrate that inhibition of extracellular signal-regulated kinase 1/2 activity aggravated neuronal loss in the hippocampus in a diabetic rat after cerebral ischemia/reperfusion, further decreased DNA repairing ability and accelerated apoptosis in hippocampal neurons. Extracellular signal-regulated kinase 1/2 activation plays a neuroprotective role in hippocampal neurons in a diabetic rat after cerebral ischemia/reperfusion.


Non-erythroid alpha spectrin prevents telomere dysfunction after DNA interstrand cross-link damage.

  • Pan Zhang‎ et al.
  • Nucleic acids research‎
  • 2013‎

Telomere integrity is critical for telomere function and genomic stability. We previously demonstrated that non-erythroid α-spectrin (αIISp) is present in mammalian cell nuclei where it is important in repair of DNA interstrand cross-links (ICLs) and chromosome stability. We now demonstrate that αIISp is also important for telomere maintenance after ICL damage. It localizes to telomeres in S phase after ICL damage where it has enhanced association with TRF1 and TRF2 and is required for recruitment of the ICL repair protein, XPF, to damage-induced foci at telomeres. In telomerase-positive normal cells depleted of αIISp by siRNA or in Fanconi anemia, complementation group A (FA-A) cells, where αIISp levels are 35-40% of normal, ICL damage results in failure of XPF to localize to telomeres, markedly increased telomere dysfunction-induced foci, followed by catastrophic loss of telomeres. Restoration of αIISp levels to normal in FA-A cells corrects these deficiencies. Our studies demonstrate that αIISp is critical for repair of DNA ICLs at telomeres, likely by facilitating the recruitment of repair proteins similar, but not identical, to its proposed role in repair of DNA ICLs in genomic DNA and that this function in turn is critical for telomere maintenance after DNA ICL damage.


In-depth proteomic analysis of the human sperm reveals complex protein compositions.

  • Gaigai Wang‎ et al.
  • Journal of proteomics‎
  • 2013‎

The male gamete (sperm) can fertilize an egg, and pass the male genetic information to the offspring. It has long been thought that sperm had a simple protein composition. Efforts have been made to identify the sperm proteome in different species, and only about 1000 proteins were reported. However, with advanced mass spectrometry and an optimized proteomics platform, we successfully identified 4675 human sperm proteins, of which 227 were testis-specific. This large number of identified proteins indicates the complex composition and function of human sperm. Comparison with the sperm transcriptome reveals little overlap, which shows the importance of future studies of sperm at the protein level. Interestingly, many signaling pathways, such as the IL-6, insulin and TGF-beta receptor signaling pathways, were found to be overrepresented. In addition, we found that 500 proteins were annotated as targets of known drugs. Three of four drugs studied were found to affect sperm movement. This in-depth human sperm proteome will be a rich resource for further studies of sperm function, and will provide candidate targets for the development of male contraceptive drugs.


Differential expression of vesicular glutamate transporters 1 and 2 may identify distinct modes of glutamatergic transmission in the macaque visual system.

  • Pooja Balaram‎ et al.
  • Journal of chemical neuroanatomy‎
  • 2013‎

Glutamate is the primary neurotransmitter utilized by the mammalian visual system for excitatory neurotransmission. The sequestration of glutamate into synaptic vesicles, and the subsequent transport of filled vesicles to the presynaptic terminal membrane, is regulated by a family of proteins known as vesicular glutamate transporters (VGLUTs). Two VGLUT proteins, VGLUT1 and VGLUT2, characterize distinct sets of glutamatergic projections between visual structures in rodents and prosimian primates, yet little is known about their distributions in the visual system of anthropoid primates. We have examined the mRNA and protein expression patterns of VGLUT1 and VGLUT2 in the visual system of macaque monkeys, an Old World anthropoid primate, in order to determine their relative distributions in the superior colliculus, lateral geniculate nucleus, pulvinar complex, V1 and V2. Distinct expression patterns for both VGLUT1 and VGLUT2 identified architectonic boundaries in all structures, as well as anatomical subdivisions of the superior colliculus, pulvinar complex, and V1. These results suggest that VGLUT1 and VGLUT2 clearly identify regions of glutamatergic input in visual structures, and may identify common architectonic features of visual areas and nuclei across the primate radiation. Additionally, we find that VGLUT1 and VGLUT2 characterize distinct subsets of glutamatergic projections in the macaque visual system; VGLUT2 predominates in driving or feedforward projections from lower order to higher order visual structures while VGLUT1 predominates in modulatory or feedback projections from higher order to lower order visual structures. The distribution of these two proteins suggests that VGLUT1 and VGLUT2 may identify class 1 and class 2 type glutamatergic projections within the primate visual system (Sherman and Guillery, 2006).


Thalamic connections of the auditory cortex in marmoset monkeys: core and medial belt regions.

  • Lisa A de la Mothe‎ et al.
  • The Journal of comparative neurology‎
  • 2006‎

In this study and its companion, the cortical and subcortical connections of the medial belt region of the marmoset monkey auditory cortex were compared with the core region. The main objective was to document anatomical features that account for functional differences observed between areas. Injections of retrograde and bi-directional anatomical tracers targeted two core areas (A1 and R), and two medial belt areas (rostromedial [RM] and caudomedial [CM]). Topographically distinct patterns of connections were revealed among subdivisions of the medial geniculate complex (MGC) and multisensory thalamic nuclei, including the suprageniculate (Sg), limitans (Lim), medial pulvinar (PM), and posterior nucleus (Po). The dominant thalamic projection to the CM was the anterior dorsal division (MGad) of the MGC, whereas the posterior dorsal division (MGpd) targeted RM. CM also had substantial input from multisensory nuclei, especially the magnocellular division (MGm) of the MGC. RM had weak multisensory connections. Corticotectal projections of both RM and CM targeted the dorsomedial quadrant of the inferior colliculus, whereas the CM projection also included a pericentral extension around the ventromedial and lateral portion of the central nucleus. Areas A1 and R were characterized by focal topographic connections within the ventral division (MGv) of the MGC, reflecting the tonotopic organization of both core areas. The results indicate that parallel subcortical pathways target the core and medial belt regions and that RM and CM represent functionally distinct areas within the medial belt auditory cortex.


Regional and laminar distribution of the vesicular glutamate transporter, VGluT2, in the macaque monkey auditory cortex.

  • Troy A Hackett‎ et al.
  • Journal of chemical neuroanatomy‎
  • 2009‎

The auditory cortex of primates contains 13 areas distributed among 3 hierarchically connected regions: core, belt, and parabelt. Thalamocortical inputs arise in parallel from four divisions of the medial geniculate complex (MGC), which have regionally distinct projection patterns. These inputs terminate in layers IIIb and/or IV, and are assumed to be glutamatergic, although this has not been verified. In the present study, immunoreactivity (-ir) for the vesicular glutamate transporter, VGluT2, was used to estimate the regional and laminar distribution of the glutamatergic thalamocortical projection in the macaque auditory cortex. Coronal sections containing auditory cortex were processed for VGluT2 and other markers concentrated in the thalamorecipient layers: cytochrome oxidase, acetylcholinesterase, and parvalbumin. Marker expression was studied with wide field and confocal microscopy. The main findings were: (1) VGluT2-ir was highest in the core, intermediate in the belt, and sparse in the parabelt; (2) VGluT2-ir was concentrated in the neuropil of layers IIIb/IV in the core and layer IIIb in the belt; (3) VGluT2-ir matched regional and laminar expression of the other chemoarchitectonic markers. The results indicate that the glutamatergic thalamic projection to auditory cortex, as indexed by VGluT2-ir, varies along the core-belt-parabelt axis in a manner that matches the gradients of other markers. These chemoarchitectonic features are likely to subserve regional differences in neuronal activity between regions of auditory cortex.


Multisensory convergence in auditory cortex, I. Cortical connections of the caudal superior temporal plane in macaque monkeys.

  • John F Smiley‎ et al.
  • The Journal of comparative neurology‎
  • 2007‎

The caudal medial auditory area (CM) has anatomical and physiological features consistent with its role as a first-stage (or "belt") auditory association cortex. It is also a site of multisensory convergence, with robust somatosensory and auditory responses. In this study, we investigated the cerebral cortical sources of somatosensory and auditory inputs to CM by injecting retrograde tracers in macaque monkeys. A companion paper describes the thalamic connections of CM (Hackett et al., J. Comp. Neurol. [this issue]). The likely cortical sources of somatosensory input to CM were the adjacent retroinsular cortex (area Ri) and granular insula (Ig). In addition, CM had reliable connections with areas Tpt and TPO, which are sites of multisensory integration. CM also had topographic connections with other auditory areas. As expected, connections with adjacent caudal auditory areas were stronger than connections with rostral areas. Surprisingly, the connections with the core were concentrated along its medial side, suggesting that there may be a medial-lateral division of function within the core. Additional injections into caudal lateral auditory area (CL) and Tpt showed similar connections with Ri, Ig, and TPO. In contrast to CM injections, these lateral injections had inputs from parietal area 7a and had a preferential connection with the lateral (gyral) part of Tpt. Taken together, the findings indicate that CM may receive somatosensory input from nearby areas along the fundus of the lateral sulcus. The differential connections of CM compared with adjacent areas provide additional evidence for the functional specialization of the individual auditory belt areas.


Ketamine Modulates Zic5 Expression via the Notch Signaling Pathway in Neural Crest Induction.

  • Yu Shi‎ et al.
  • Frontiers in molecular neuroscience‎
  • 2018‎

Ketamine is a potent dissociative anesthetic and the most commonly used illicit drug. Many addicts are women at childbearing age. Although ketamine has been extensively studied as a clinical anesthetic, its effects on embryonic development are poorly understood. Here, we applied the Xenopus model to study the effects of ketamine on development. We found that exposure to ketamine from pre-gastrulation (stage 7) to early neural plate (stage 13.5) resulted in disruption of neural crest (NC) derivatives. Ketamine exposure did not affect mesoderm development as indicated by the normal expression of Chordin, Xbra, Wnt8, and Fgf8. However, ketamine treatment significantly inhibited Zic5 and Slug expression at early neural plate stage. Overexpression of Zic5 rescued ketamine-induced Slug inhibition, suggesting the blockage of NC induction was mediated by Zic5. Furthermore, we found Notch signaling was altered by ketamine. Ketamine inhibited the expression of Notch targeted genes including Hes5.2a, Hes5.2b, and ESR1 and ketamine-treated embryos exhibited Notch-deficient somite phenotypes. A 15 bp core binding element upstream of Zic5 was induced by Notch signaling and caused transcriptional activation. These results demonstrated that Zic5 works as a downstream target gene of Notch signaling in Xenopus NC induction. Our study provides a novel teratogenic mechanism whereby ketamine disrupts NC induction via targeting a Notch-Zic5 signaling pathway.


Ischemic flap survival improvement by composition-selective fat grafting with novel adipose tissue derived product - stromal vascular fraction gel.

  • Pan Zhang‎ et al.
  • Biochemical and biophysical research communications‎
  • 2018‎

Flap necrosis due to insufficient blood supply is a common postoperative complication in random pattern flaps. Stem cell therapies have emerged as promising biologics for tissue ischemia. A novel fat derived product, stromal vascular fraction gel (SVF-gel), can be prepared with lipoaspirate through simple mechanical processing, removing only the lipid content. SVF-gel enriches adipose-derived stem cells and potentially beneficial for flap necrosis.


Short-term efficacy and safety of lasmiditan, a novel 5-HT1F receptor agonist, for the acute treatment of migraine: a systematic review and meta-analysis.

  • Min Hou‎ et al.
  • The journal of headache and pain‎
  • 2020‎

Migraine has been recognized as one of common diseases in the world whose current treatment options are not ideal. Lasmiditan, an oral 5-hydroxytryptamine (HT)1F receptor agonist, appears more promising for the acute treatment of migraine because of considerably better effect profiles with no severe adverse events (AEs). This review aimed to systematically evaluate the efficacy and safety of lasmiditan from the results of randomized controlled trials (RCTs).


Nicotinic Receptor Subunit Distribution in Auditory Cortex: Impact of Aging on Receptor Number and Function.

  • Madan Ghimire‎ et al.
  • The Journal of neuroscience : the official journal of the Society for Neuroscience‎
  • 2020‎

The presence of novel or degraded communication sounds likely results in activation of basal forebrain cholinergic neurons increasing release of ACh onto presynaptic and postsynaptic nAChRs in primary auditory cortex (A1). nAChR subtypes include high-affinity heteromeric nAChRs commonly composed of α4 and β2 subunits and low-affinity homomeric nAChRs composed of α7 subunits. In young male FBN rats, we detail the following: (1) the distribution/expression of nAChR subunit transcripts in excitatory (VGluT1) and inhibitory (VGAT) neurons across A1 layers; (2) heteromeric nAChR binding across A1 layers; and (3) nAChR excitability in A1 layer (L) 5 cells. In aged rats, we detailed the impact of aging on A1 nAChR subunit expression across layers, heteromeric nAChR receptor binding, and nAChR excitability of A1 L5 cells. A majority of A1 cells coexpressed transcripts for β2 and α4 with or without α7, while dispersed subpopulations expressed β2 and α7 or α7 alone. nAChR subunit transcripts were expressed in young excitatory and inhibitory neurons across L2-L6. Transcript abundance varied across layers, and was highest for β2 and α4. Significant age-related decreases in nAChR subunit transcript expression (message) and receptor binding (protein) were observed in L2-6, most pronounced in infragranular layers. In vitro patch-clamp recordings from L5B pyramidal output neurons showed age-related nAChR subunit-selective reductions in postsynaptic responses to ACh. Age-related losses of nAChR subunits likely impact ways in which A1 neurons respond to ACh release. While the elderly require additional resources to disambiguate degraded speech codes, resources mediated by nAChRs may be compromised with aging.SIGNIFICANCE STATEMENT When attention is required, cholinergic basal forebrain neurons may trigger increased release of ACh onto auditory neurons in primary auditory cortex (A1). Laminar and phenotypic differences in neuronal nAChR expression determine ways in which A1 neurons respond to release of ACh in challenging acoustic environments. This study detailed the distribution and expression of nAChR subunit transcript and protein across A1 layers in young and aged rats. Results showed a differential distribution of nAChR subunits across A1 layers. Age-related decreases in transcript/protein expression were reflected in age-related subunit specific functional loss of nAChR signaling to ACh application in A1 layer 5. Together, these findings could reflect the age-related decline in selective attention observed in the elderly.


A study on the mechanism of Wnt inhibitory factor 1 in osteoarthritis.

  • Zhiyong Zhu‎ et al.
  • Archives of medical science : AMS‎
  • 2020‎

In our study we aimed to investigate the mechanism of Wnt inhibitory factor 1 (WIF1) on regulating chondrocyte proliferation and apoptosis via reactive oxygen species (ROS) and the Wnt/βcatenin signaling pathway in osteoarthritis (OA).


Modulation of Symbiotic Compatibility by Rhizobial Zinc Starvation Machinery.

  • Pan Zhang‎ et al.
  • mBio‎
  • 2020‎

Pathogenic bacteria need high-affinity zinc uptake systems to counteract the nutritional immunity exerted by infected hosts. However, our understanding of zinc homeostasis in mutualistic systems such as the rhizobium-legume symbiosis is limited. Here, we show that the conserved high-affinity zinc transporter ZnuABC and accessory transporter proteins (Zip1, Zip2, and c06450) made cumulative contributions to nodulation of the broad-host-range strain Sinorhizobium fredii CCBAU45436. Zur acted as a zinc-dependent repressor for the znuC-znuB-zur operon, znuA, and c06450 by binding to the associated Zur box, but did not regulate zip1 and zip2 ZnuABC was the major zinc transporter. Combined mutants lacking znuA and one of the three accessory genes had more severe defects in nodulation and growth under zinc starvation conditions than the znuA mutant, though rhizoplane colonization by these mutants was not impaired. In contrast to the elite strain CCBAU45436, more drastic symbiotic defects were observed for the znuA mutants of other Sinorhizobium strains, which lack at least one of the three accessory genes in their genomes and are characterized by their limited host range and geographical distribution. The znu-derived mutants showed a higher expression level of nod genes involved in Nod factor biosynthesis and a reduced expression of genes encoding a type three secretion system and its effector NopP, which can interfere with the host immune system. Application of exogenous zinc restored the nodulation ability of these znu-derived mutants. Therefore, the conserved ZnuABC and accessory components in the zinc starvation machinery play an important role in modulating symbiotic compatibility.IMPORTANCE The rhizobium-legume symbiosis contributes around 65% of biological nitrogen fixation in agriculture systems and is critical for sustainable agriculture by reducing the amount of chemical nitrogen fertilizer being used. Rhizobial inocula have been commercialized for more than 100 years, but the efficiency of inoculation can vary among legume cultivars, field sites, and years. These long-lasting challenging problems impede the establishment of a sustainable agriculture, particularly in developing countries. Here, we report that rhizobial zinc starvation machinery containing a conserved high-affinity zinc transporter and accessory components makes cumulative contributions to modulating rhizobial symbiotic compatibility. This work highlights a critical role of largely unexplored nutritional immunity in the rhizobium-legume symbiosis, which makes zinc starvation machinery an attractive target for improving rhizobial symbiotic compatibility.


Experiments Investigating the Competitive Growth Advantage of Two Different Genotypes of Human Metapneumovirus: Implications for the Alternation of Genotype Prevalence.

  • Zhen Zhou‎ et al.
  • Scientific reports‎
  • 2020‎

Human metapneumovirus (hMPV) is an important pathogen that causes upper and lower respiratory tract infections in children worldwide. hMPV has two major genotypes, hMPV-A and hMPV-B. Epidemiological studies have shown that the two hMPV genotypes alternate in predominance worldwide in recent years. Co-circulation of the two genotypes of hMPV was usually observed and there is no study about the interaction between them, such as competitive replication, which maybe the possible mechanisms for alternating prevalence of subtypes. Our present study have used two different genotypes of hMPV (genotype A: NL/1/00; B: NL/1/99) in different proportions in animal model (BALB/c mice) and cell model (Vero-E6) separately. The result showed that the competitive growth does exist in BALB/c mice, genotype B had a strong competitive advantage. However, genotype B did not cause more severe disease than non-predominant (genotype A) or mixed strains in the study, which were evaluated by the body weight, airway hyperresponsiveness and lung pathology of mouse. In cell model, competitive growth and the two genotypes alternately prevalence were observed. In summary, we confirmed that there was a competitive replication between hMPV genotype A and B, and no difference in disease severity caused by the two subtypes. This study shows a new insight to understand the alternation of hMPV genotype prevalence through genotype competition and provide experimental evidence for disease control and vaccine design.


Co-delivery of silybin and paclitaxel by dextran-based nanoparticles for effective anti-tumor treatment through chemotherapy sensitization and microenvironment modulation.

  • Meirong Huo‎ et al.
  • Journal of controlled release : official journal of the Controlled Release Society‎
  • 2020‎

Modulation of tumor microenvironment (TME) has been indicated as an approach to improve efficacy of cancer therapy. Here, we proposed a nano co-delivery based combination therapy of paclitaxel (PTX) and silybin (SB) which can employ the synergistic effects through chemotherapy sensitization and microenvironment modulation. A dextran-based amphiphilic polymer (Dex-DOCA) was successfully developed for in vivo co-delivery and thus "synchronizing" the biodistribution, transport and release of PTX and SB. Resultantly, Dex-DOCA exhibited an excellent encapsulating efficiency for both PTX and SB with adjustable loading ratio for an optimal synergistic antitumor activity. Moreover, the co-loaded nanoparticles efficiently discharged the two drugs at the prospective dosage ratio specifically in acid endo/lysosome mimic environments. The results of in vitro cytotoxicity and cell apoptosis assays further confirmed the SB sensitized PTX potency. Finally, in vivo investigation demonstrated that the co-loaded nanoparticles could effectively accumulate in tumor sites by passive targeting, and inhibit tumor growth through an enhanced intratumoral penetration (resulted from stromal components eradication and tumor vessels normalization associated TME modulation), as well as a sensitization effect of SB on PTX cytotoxic chemotherapy.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: