Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 13 papers out of 13 papers

Dissection of the genetics of Parkinson's disease identifies an additional association 5' of SNCA and multiple associated haplotypes at 17q21.

  • UK Parkinson's Disease Consortium‎ et al.
  • Human molecular genetics‎
  • 2011‎

We performed a genome-wide association study (GWAS) in 1705 Parkinson's disease (PD) UK patients and 5175 UK controls, the largest sample size so far for a PD GWAS. Replication was attempted in an additional cohort of 1039 French PD cases and 1984 controls for the 27 regions showing the strongest evidence of association (P< 10(-4)). We replicated published associations in the 4q22/SNCA and 17q21/MAPT chromosome regions (P< 10(-10)) and found evidence for an additional independent association in 4q22/SNCA. A detailed analysis of the haplotype structure at 17q21 showed that there are three separate risk groups within this region. We found weak but consistent evidence of association for common variants located in three previously published associated regions (4p15/BST1, 4p16/GAK and 1q32/PARK16). We found no support for the previously reported SNP association in 12q12/LRRK2. We also found an association of the two SNPs in 4q22/SNCA with the age of onset of the disease.


Exome sequencing reveals de novo WDR45 mutations causing a phenotypically distinct, X-linked dominant form of NBIA.

  • Tobias B Haack‎ et al.
  • American journal of human genetics‎
  • 2012‎

Neurodegeneration with brain iron accumulation (NBIA) is a group of genetic disorders characterized by abnormal iron deposition in the basal ganglia. We report that de novo mutations in WDR45, a gene located at Xp11.23 and encoding a beta-propeller scaffold protein with a putative role in autophagy, cause a distinctive NBIA phenotype. The clinical features include early-onset global developmental delay and further neurological deterioration (parkinsonism, dystonia, and dementia developing by early adulthood). Brain MRI revealed evidence of iron deposition in the substantia nigra and globus pallidus. Males and females are phenotypically similar, an observation that might be explained by somatic mosaicism in surviving males and germline or somatic mutations in females, as well as skewing of X chromosome inactivation. This clinically recognizable disorder is among the more common forms of NBIA, and we suggest that it be named accordingly as beta-propeller protein-associated neurodegeneration.


Lysine 27 ubiquitination of the mitochondrial transport protein Miro is dependent on serine 65 of the Parkin ubiquitin ligase.

  • Nicol Birsa‎ et al.
  • The Journal of biological chemistry‎
  • 2014‎

Mitochondrial transport plays an important role in matching mitochondrial distribution to localized energy production and calcium buffering requirements. Here, we demonstrate that Miro1, an outer mitochondrial membrane (OMM) protein crucial for the regulation of mitochondrial trafficking and distribution, is a substrate of the PINK1/Parkin mitochondrial quality control system in human dopaminergic neuroblastoma cells. Moreover, Miro1 turnover on damaged mitochondria is altered in Parkinson disease (PD) patient-derived fibroblasts containing a pathogenic mutation in the PARK2 gene (encoding Parkin). By analyzing the kinetics of Miro1 ubiquitination, we further demonstrate that mitochondrial damage triggers rapid (within minutes) and persistent Lys-27-type ubiquitination of Miro1 on the OMM, dependent on PINK1 and Parkin. Proteasomal degradation of Miro1 is then seen on a slower time scale, within 2-3 h of the onset of ubiquitination. We find Miro ubiquitination in dopaminergic neuroblastoma cells is independent of Miro1 phosphorylation at Ser-156 but is dependent on the recently identified Ser-65 residue within Parkin that is phosphorylated by PINK1. Interestingly, we find that Miro1 can stabilize phospho-mutant versions of Parkin on the OMM, suggesting that Miro is also part of a Parkin receptor complex. Moreover, we demonstrate that Ser-65 in Parkin is critical for regulating Miro levels upon mitochondrial damage in rodent cortical neurons. Our results provide new insights into the ubiquitination-dependent regulation of the Miro-mediated mitochondrial transport machinery by PINK1/Parkin and also suggest that disruption of this regulation may be implicated in Parkinson disease pathogenesis.


Neuropathological features of genetically confirmed DYT1 dystonia: investigating disease-specific inclusions.

  • Reema Paudel‎ et al.
  • Acta neuropathologica communications‎
  • 2014‎

Early onset isolated dystonia (DYT1) is linked to a three base pair deletion (ΔGAG) mutation in the TOR1A gene. Clinical manifestation includes intermittent muscle contraction leading to twisting movements or abnormal postures. Neuropathological studies on DYT1 cases are limited, most showing no significant abnormalities. In one study, brainstem intraneuronal inclusions immunoreactive for ubiquitin, torsinA and lamin A/C were described. Using the largest series reported to date comprising 7 DYT1 cases, we aimed to identify consistent neuropathological features in the disease and determine whether we would find the same intraneuronal inclusions as previously reported.


Clinical Practice: Evidence-Based Recommendations for the Treatment of Cervical Dystonia with Botulinum Toxin.

  • Maria Fiorella Contarino‎ et al.
  • Frontiers in neurology‎
  • 2017‎

Cervical dystonia (CD) is the most frequent form of focal dystonia. Symptoms often result in pain and functional disability. Local injections of botulinum neurotoxin are currently the treatment of choice for CD. Although this treatment has proven effective and is widely applied worldwide, many issues still remain open in the clinical practice. We performed a systematic review of the literature on botulinum toxin treatment for CD based on a question-oriented approach, with the aim to provide practical recommendations for the treating clinicians. Key questions from the clinical practice were explored. Results suggest that while the beneficial effect of botulinum toxin treatment on different aspects of CD is well established, robust evidence is still missing concerning some practical aspects, such as dose equivalence between different formulations, optimal treatment intervals, treatment approaches, and the use of supportive techniques including electromyography or ultrasounds. Established strategies to prevent or manage common side effects (including excessive muscle weakness, pain at injection site, dysphagia) and potential contraindications to this treatment (pregnancy and lactation, use of anticoagulants, neurological comorbidities) should also be further explored.


Screening for VPS35 mutations in Parkinson's disease.

  • Una-Marie Sheerin‎ et al.
  • Neurobiology of aging‎
  • 2012‎

Recently 2 groups have independently identified a mutation in the gene 'vacuolar protein sorting 35 homolog' (VPS35 c.1858G>A; p.Asp620Asn) as a possible cause of autosomal dominant Parkinson's disease (PD). In order to assess the frequency of the reported mutation and to search for other possible disease-causing variants in this gene, we sequenced all 17 exons of VPS35 in 96 familial PD cases, and exon 15 (in which the reported mutation is found) in an additional 64 familial PD cases, 175 young-onset PD cases, and 262 sporadic, neuropathologically confirmed PD cases. We identified 1 individual with the p.Asp620Asn mutation and an autosomal dominant family history of PD. Subsequent follow-up of the family confirmed an affected sibling and cousin who also carried the same mutation. No other potentially disease-causing mutations were identified. We conclude that the VPS35 c.1858G>A mutation is an uncommon cause of familial Parkinson's disease in our population.


Mutations in the gene PRRT2 cause paroxysmal kinesigenic dyskinesia with infantile convulsions.

  • Hsien-Yang Lee‎ et al.
  • Cell reports‎
  • 2012‎

Paroxysmal kinesigenic dyskinesia with infantile convulsions (PKD/IC) is an episodic movement disorder with autosomal-dominant inheritance and high penetrance, but the causative genetic mutation is unknown. We have now identified four truncating mutations involving the gene PRRT2 in the vast majority (24/25) of well-characterized families with PKD/IC. PRRT2 truncating mutations were also detected in 28 of 78 additional families. PRRT2 encodes a proline-rich transmembrane protein of unknown function that has been reported to interact with the t-SNARE, SNAP25. PRRT2 localizes to axons but not to dendritic processes in primary neuronal culture, and mutants associated with PKD/IC lead to dramatically reduced PRRT2 levels, leading ultimately to neuronal hyperexcitability that manifests in vivo as PKD/IC.


Current Opinions and Areas of Consensus on the Role of the Cerebellum in Dystonia.

  • Vikram G Shakkottai‎ et al.
  • Cerebellum (London, England)‎
  • 2017‎

A role for the cerebellum in causing ataxia, a disorder characterized by uncoordinated movement, is widely accepted. Recent work has suggested that alterations in activity, connectivity, and structure of the cerebellum are also associated with dystonia, a neurological disorder characterized by abnormal and sustained muscle contractions often leading to abnormal maintained postures. In this manuscript, the authors discuss their views on how the cerebellum may play a role in dystonia. The following topics are discussed: The relationships between neuronal/network dysfunctions and motor abnormalities in rodent models of dystonia. Data about brain structure, cerebellar metabolism, cerebellar connections, and noninvasive cerebellar stimulation that support (or not) a role for the cerebellum in human dystonia. Connections between the cerebellum and motor cortical and sub-cortical structures that could support a role for the cerebellum in dystonia. Overall points of consensus include: Neuronal dysfunction originating in the cerebellum can drive dystonic movements in rodent model systems. Imaging and neurophysiological studies in humans suggest that the cerebellum plays a role in the pathophysiology of dystonia, but do not provide conclusive evidence that the cerebellum is the primary or sole neuroanatomical site of origin.


A systematic screening to identify de novo mutations causing sporadic early-onset Parkinson's disease.

  • Celia Kun-Rodrigues‎ et al.
  • Human molecular genetics‎
  • 2015‎

Despite the many advances in our understanding of the genetic basis of Mendelian forms of Parkinson's disease (PD), a large number of early-onset cases still remain to be explained. Many of these cases, present with a form of disease that is identical to that underlined by genetic causes, but do not have mutations in any of the currently known disease-causing genes. Here, we hypothesized that de novo mutations may account for a proportion of these early-onset, sporadic cases. We performed exome sequencing in full parent-child trios where the proband presents with typical PD to unequivocally identify de novo mutations. This approach allows us to test all genes in the genome in an unbiased manner. We have identified and confirmed 20 coding de novo mutations in 21 trios. We have used publicly available population genetic data to compare variant frequencies and our independent in-house dataset of exome sequencing in PD (with over 1200 cases) to identify additional variants in the same genes. Of the genes identified to carry de novo mutations, PTEN, VAPB and ASNA1 are supported by various sources of data to be involved in PD. We show that these genes are reported to be within a protein-protein interaction network with PD genes and that they contain additional rare, case-specific, mutations in our independent cohort of PD cases. Our results support the involvement of these three genes in PD and suggest that testing for de novo mutations in sporadic disease may aid in the identification of novel disease-causing genes.


RAD51 haploinsufficiency causes congenital mirror movements in humans.

  • Christel Depienne‎ et al.
  • American journal of human genetics‎
  • 2012‎

Congenital mirror movements (CMM) are characterized by involuntary movements of one side of the body that mirror intentional movements on the opposite side. CMM reflect dysfunctions and structural abnormalities of the motor network and are mainly inherited in an autosomal-dominant fashion. Recently, heterozygous mutations in DCC, the gene encoding the receptor for netrin 1 and involved in the guidance of developing axons toward the midline, have been identified but CMM are genetically heterogeneous. By combining genome-wide linkage analysis and exome sequencing, we identified heterozygous mutations introducing premature termination codons in RAD51 in two families with CMM. RAD51 mRNA was significantly downregulated in individuals with CMM resulting from the degradation of the mutated mRNA by nonsense-mediated decay. RAD51 was specifically present in the developing mouse cortex and, more particularly, in a subpopulation of corticospinal axons at the pyramidal decussation. The identification of mutations in RAD51, known for its key role in the repair of DNA double-strand breaks through homologous recombination, in individuals with CMM reveals a totally unexpected role of RAD51 in neurodevelopment. These findings open a new field of investigation for researchers attempting to unravel the molecular pathways underlying bimanual motor control in humans.


Analysis of ATP13A2 in large neurodegeneration with brain iron accumulation (NBIA) and dystonia-parkinsonism cohorts.

  • Michael C Kruer‎ et al.
  • Neuroscience letters‎
  • 2012‎

Several causative genes have been identified for both dystonia-parkinsonism and neurodegeneration with brain iron accumulation (NBIA), yet many patients do not have mutations in any of the known genes. Mutations in the ATP13A2 lead to Kufor Rakeb disease, a form of autosomal recessive juvenile parkinsonism that also features oromandibular dystonia. More recently, evidence of iron deposition in the caudate and putamen have been reported in patients with ATP13A2 mutations. We set out to determine the frequency of ATP13A2 mutations in cohorts of idiopathic NBIA and dystonia-parkinsonism. We screened for large deletions using whole genome arrays, and sequenced the entire coding region in 92 cases of NBIA and 76 cases of dystonia-parkinsonism. A number of coding and non-coding sequence variants were identified in a heterozygous state, but none were predicted to be pathogenic based on in silico analyses. Our results indicate that ATP13A2 mutations are a rare cause of both NBIA and dystonia-parkinsonism.


Two forms of short-interval intracortical inhibition in human motor cortex.

  • Po-Yu Fong‎ et al.
  • Brain stimulation‎
  • 2021‎

Pulses of transcranial magnetic stimulation (TMS) with a predominantly anterior-posterior (AP) or posterior-anterior (PA) current direction over the primary motor cortex appear to activate distinct excitatory inputs to corticospinal neurons. In contrast, very few reports have examined whether the inhibitory neurons responsible for short-interval intracortical inhibition (SICI) are sensitive to TMS current direction.


Critical care, maternal and neonatal outcomes of pregnant women with COVID-19 admitted to eight intensive care units during the wildtype, alpha and delta waves of the pandemic across the North West of England-a retrospective review.

  • Kailash Bhatia‎ et al.
  • Acta obstetricia et gynecologica Scandinavica‎
  • 2023‎

Few studies have described obstetric and critical care outcomes in pregnant women with COVID-19 needing intensive care unit (ICU) admission.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: