Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 16 papers out of 16 papers

Targeted alternative splicing of TAF4: a new strategy for cell reprogramming.

  • Jekaterina Kazantseva‎ et al.
  • Scientific reports‎
  • 2016‎

Reprogramming of somatic cells has become a versatile tool for biomedical research and for regenerative medicine. In the current study, we show that manipulating alternative splicing (AS) is a highly potent strategy to produce cells for therapeutic applications. We demonstrate that silencing of hTAF4-TAFH activity of TAF4 converts human facial dermal fibroblasts to melanocyte-like (iMel) cells. iMel cells produce melanin and express microphthalmia-associated transcription factor (MITF) and its target genes at levels comparable to normal melanocytes. Reprogramming of melanoma cells by manipulation with hTAF4-TAFH activity upon TAFH RNAi enforces cell differentiation towards chondrogenic pathway, whereas ectoptic expression of TAF4 results in enhanced multipotency and neural crest-like features in melanoma cells. In both cell states, iMels and cancer cells, hTAF4-TAFH activity controls migration by supporting E- to N-cadherin switches. From our data, we conclude that targeted splicing of hTAF4-TAFH coordinates AS of other TFIID subunits, underscoring the role of TAF4 in synchronised changes of Pol II complex composition essential for efficient cellular reprogramming. Taken together, targeted AS of TAF4 provides a unique strategy for generation of iMels and recapitulating stages of melanoma progression.


Graphene-augmented nanofiber scaffolds demonstrate new features in cells behaviour.

  • Jekaterina Kazantseva‎ et al.
  • Scientific reports‎
  • 2016‎

Three-dimensional (3D) customized scaffolds capable to mimic a native extracellular matrix open new frontiers in cells manipulation and advanced therapy. The major challenge is in a proper substrate for in vitro models on engineered scaffolds, capable to modulate cells differentiation. Here for the first time we demonstrate novel design and functionality of the 3D porous scaffolds of aligned, self-assembled ceramic nanofibers of ultra-high anisotropy ratio (~10(7)), augmented into graphene shells. This unique hybrid nano-network allows an exceptional combination of selective guidance stimuli of stem cells differentiation, immune reactions variations, and local immobilization of cancer cells, which was not available before. The scaffolds were shown to be able to direct human mesenchymal stem cells (important for stimulation of neuronal and muscle cells) preferential orientation, to suppress major inflammatory factors, and to localize cancer cells; all without additions of specific culture media. The selective downregulation of specific cytokines is anticipated as a new tool for understanding of human immune system and ways of treatment of associated diseases. The effects observed are self-regulated by cells only, without side effects, usually arising from use of external factors. New scaffolds may open new horizons for stem cells fate control such as towards axons and neurites regeneration (Alzheimer's disease) as well as cancer therapy development.


Protein kinase inhibitor SU6668 attenuates positive regulation of Gli proteins in cancer and multipotent progenitor cells.

  • Alla Piirsoo‎ et al.
  • Biochimica et biophysica acta‎
  • 2014‎

Observations that Glioma-associated transcription factors Gli1 and Gli2 (Gli1/2), executers of the Sonic Hedgehog (Shh) signaling pathway and targets of the Transforming Growth Factor β (TGF-β) signaling axis, are involved in numerous developmental and pathological processes unveil them as attractive pharmaceutical targets. Unc-51-like serine/threonine kinase Ulk3 has been suggested to play kinase activity dependent and independent roles in the control of Gli proteins in the context of the Shh signaling pathway. This study aimed at investigating whether the mechanism of generation of Gli1/2 transcriptional activators has similarities regardless of the signaling cascade evoking their activation. We also elucidate further the role of Ulk3 kinase in regulation of Gli1/2 proteins and examine SU6668 as an inhibitor of Ulk3 catalytic activity and a compound targeting Gli1/2 proteins in different cell-based experimental models. Here we demonstrate that Ulk3 is required not only for maintenance of basal levels of Gli1/2 proteins but also for TGF-β or Shh dependent activation of endogenous Gli1/2 proteins in human adipose tissue derived multipotent stromal cells (ASCs) and mouse immortalized progenitor cells, respectively. We show that cultured ASCs possess the functional Shh signaling axis and differentiate towards osteoblasts in response to Shh. Also, we demonstrate that similarly to Ulk3 RNAi, SU6668 prevents de novo expression of Gli1/2 proteins and antagonizes the Gli-dependent activation of the gene expression programs induced by either Shh or TGF-β. Our data suggest SU6668 as an efficient inhibitor of Ulk3 kinase allowing manipulation of the Gli-dependent transcriptional outcome.


Neuralized family member NEURL1 is a ubiquitin ligase for the cGMP-specific phosphodiesterase 9A.

  • Kati Taal‎ et al.
  • Scientific reports‎
  • 2019‎

Neuralized functions as a positive regulator of the Notch pathway by promoting ubiquitination of Notch ligands via its E3 ligase activity, resulting in their efficient endocytosis and signaling. Using a yeast two-hybrid screen, we have identified a cGMP-hydrolysing phosphodiesterase, PDE9A, as a novel interactor and substrate of Neuralized E3 ubiquitin protein ligase 1 (NEURL1). We confirmed this interaction with co-immunoprecipitation experiments and show that both Neuralized Homology Repeat domains of NEURL1 can interact with PDE9A. We also demonstrate that NEURL1 can promote polyubiquitination of PDE9A that leads to its proteasome-mediated degradation mainly via lysine residue K27 of ubiquitin. Our results suggest that NEURL1 acts as a novel regulator of protein levels of PDE9A.


LXXLL peptide converts transportan 10 to a potent inducer of apoptosis in breast cancer cells.

  • Kairit Tints‎ et al.
  • International journal of molecular sciences‎
  • 2014‎

Degenerate expression of transcription coregulator proteins is observed in most human cancers. Therefore, in targeted anti-cancer therapy development, intervention at the level of cancer-specific transcription is of high interest. The steroid receptor coactivator-1 (SRC-1) is highly expressed in breast, endometrial, and prostate cancer. It is present in various transcription complexes, including those containing nuclear hormone receptors. We examined the effects of a peptide that contains the LXXLL-motif of the human SRC-1 nuclear receptor box 1 linked to the cell-penetrating transportan 10 (TP10), hereafter referred to as TP10-SRC1LXXLL, on proliferation and estrogen-mediated transcription of breast cancer cells in vitro. Our data show that TP10-SRC1LXXLL induced dose-dependent cell death of breast cancer cells, and that this effect was not affected by estrogen receptor (ER) status. Surprisingly TP10-SRC1LXXLL severely reduced the viability and proliferation of hormone-unresponsive breast cancer MDA-MB-231 cells. In addition, the regulation of the endogenous ERα direct target gene pS2 was not affected by TP10-SRC1LXXLL in estrogen-stimulated MCF-7 cells. Dermal fibroblasts were similarly affected by treatment with higher concentrations of TP10-SRC1LXXLL and this effect was significantly delayed. These results suggest that the TP10-SRC1LXXLL peptide may be an effective drug candidate in the treatment of cancers with minimal therapeutic options, for example ER-negative tumors.


Alternative splicing targeting the hTAF4-TAFH domain of TAF4 represses proliferation and accelerates chondrogenic differentiation of human mesenchymal stem cells.

  • Jekaterina Kazantseva‎ et al.
  • PloS one‎
  • 2013‎

Transcription factor IID (TFIID) activity can be regulated by cellular signals to specifically alter transcription of particular subsets of genes. Alternative splicing of TFIID subunits is often the result of external stimulation of upstream signaling pathways. We studied tissue distribution and cellular expression of different splice variants of TFIID subunit TAF4 mRNA and biochemical properties of its isoforms in human mesenchymal stem cells (hMSCs) to reveal the role of different isoforms of TAF4 in the regulation of proliferation and differentiation. Expression of TAF4 transcripts with exons VI or VII deleted, which results in a structurally modified hTAF4-TAFH domain, increases during early differentiation of hMSCs into osteoblasts, adipocytes and chondrocytes. Functional analysis data reveals that TAF4 isoforms with the deleted hTAF4-TAFH domain repress proliferation of hMSCs and preferentially promote chondrogenic differentiation at the expense of other developmental pathways. This study also provides initial data showing possible cross-talks between TAF4 and TP53 activity and switching between canonical and non-canonical WNT signaling in the processes of proliferation and differentiation of hMSCs. We propose that TAF4 isoforms generated by the alternative splicing participate in the conversion of the cellular transcriptional programs from the maintenance of stem cell state to differentiation, particularly differentiation along the chondrogenic pathway.


Drastic Effects on the Microbiome of a Young Rower Engaged in High-Endurance Exercise After a Month Usage of a Dietary Fiber Supplement.

  • Mariliis Jaago‎ et al.
  • Frontiers in nutrition‎
  • 2021‎

Food supplements are increasingly used worldwide. However, research on the efficacy of such supplements on athlete's well-being and optimal sports performance is very limited. This study performed in junior academic rowing explores the effects of nutritional supplements to aid to the high energy requirements at periods of intense exercise. Herein, the effects of prebiotic fibers on the intestinal microbiome composition of an 18-year-old athlete exercising at high loads during an 8-month period in a "real-life" setting were examined using next-generation sequencing analysis. Results demonstrated that although the alpha diversity of the subject's microbiome drastically decreased [from 2.11 precompetition to 1.67 (p < 0.05)] upon fiber consumption, the Firmicutes/Bacteroidetes ratio increased significantly [from 3.11 to 4.55, as compared with population average (p < 0.05)]. Underlying these macrolevel microbial alterations were demonstrable shifts from acetate- to butyrate-producing bacteria, although with stable effects on the Veillonella species. To our knowledge, this a unique study that shows pronounced changes in the gut microbiome of the young athlete at the competition season and their favorable compensation by the dietary fiber intake. The data here expand the overall understanding of how the high energy needs in high-intensity sports like academic rowing could be supported by dietary fiber supplement consumption.


Immune response to a conserved enteroviral epitope of the major capsid VP1 protein is associated with lower risk of cardiovascular disease.

  • Nadežda Pupina‎ et al.
  • EBioMedicine‎
  • 2022‎

Major cardiac events including myocardial infarction (MI) are associated with viral infections. However, how specific infections contribute to the cardiovascular insults has remained largely unclear.


Prostaglandin D2 Receptor DP1 Antibodies Predict Vaccine-induced and Spontaneous Narcolepsy Type 1: Large-scale Study of Antibody Profiling.

  • Helle Sadam‎ et al.
  • EBioMedicine‎
  • 2018‎

Neuropathological findings support an autoimmune etiology as an underlying factor for loss of orexin-producing neurons in spontaneous narcolepsy type 1 (narcolepsy with cataplexy; sNT1) as well as in Pandemrix influenza vaccine-induced narcolepsy type 1 (Pdmx-NT1). The precise molecular target or antigens for the immune response have, however, remained elusive.


Graphene-Augmented Nanofiber Scaffolds Trigger Gene Expression Switching of Four Cancer Cell Types.

  • Jekaterina Kazantseva‎ et al.
  • ACS biomaterials science & engineering‎
  • 2018‎

Three-dimensional (3D) customized scaffolds are anticipated to provide new frontiers in cell manipulation and advanced therapy methods. Here, we demonstrate the application of hybrid 3D porous scaffolds, representing networks of highly aligned self-assembled ceramic nanofibers, for culturing four types of cancer cells. Ultrahigh aspect ratio (∼107) of graphene augmented fibers of tailored nanotopology is shown as an alternative tool to substantially affect cancerous gene expression, eventually due to differences in local biomechanical features of the cell-matrix interactions. Here, we report a clear selective up- and down-regulation of groups of markers for breast cancer (MDA-MB231), colorectal cancer (CaCO2), melanoma (WM239A), and neuroblastoma (Kelly) depending on only fiber orientation and morphology without application of any other stimulus. Changes in gene expression are also revealed for Mitomycin C treatment of MDA-MB231, making the scaffold a suitable platform for testing of anticancer agents. This allows an opportunity for selective "clean" guidance to a deep understanding of mechanisms of cancer cells progressive growth and tumor formation without possible side effects by manipulation with the specific markers.


BAC transgenic mice reveal distal cis-regulatory elements governing BDNF gene expression.

  • Indrek Koppel‎ et al.
  • Genesis (New York, N.Y. : 2000)‎
  • 2010‎

Brain-derived neurotrophic factor (BDNF), a member of the neurotrophin family of neurotrophic factors, has important functions in the peripheral and central nervous system of vertebrates. We have generated bacterial artificial chromosome (BAC) transgenic mice harboring 207 kb of the rat BDNF (rBDNF) locus containing the gene, 13 kb of genomic sequences upstream of BDNF exon I, and 144 kb downstream of protein encoding exon IX, in which protein coding region was replaced with the lacZ reporter gene. This BDNF-BAC drove transgene expression in the brain, heart, and lung, recapitulating endogenous BDNF expression to a larger extent than shorter rat BDNF transgenes employed previously. Moreover, kainic acid induced the expression of the transgenic BDNF mRNA in the cerebral cortex and hippocampus through preferential activation of promoters I and IV, thus recapitulating neuronal activity-dependent transcription of the endogenous BDNF gene.


Dissecting the human BDNF locus: bidirectional transcription, complex splicing, and multiple promoters.

  • Priit Pruunsild‎ et al.
  • Genomics‎
  • 2007‎

Brain-derived neurotrophic factor (BDNF), a member of the nerve growth factor family of neurotrophins, has central roles in the development, physiology, and pathology of the nervous system. We have elucidated the structure of the human BDNF gene, identified alternative transcripts, and studied their expression in adult human tissues and brain regions. In addition, the transcription initiation sites for human BDNF transcripts were determined and the activities of BDNF promoters were analyzed in transient overexpression assays. Our results show that the human BDNF gene has 11 exons and nine functional promoters that are used tissue and brain-region specifically. Furthermore, noncoding natural antisense RNAs that display complex splicing and expression patterns are transcribed in the BDNF gene locus from the antiBDNF gene (approved gene symbol BDNFOS). We show that BDNF and antiBDNF transcripts form dsRNA duplexes in the brain in vivo, suggesting an important role for antiBDNF in regulating BDNF expression in human.


Mouse and rat BDNF gene structure and expression revisited.

  • Tamara Aid‎ et al.
  • Journal of neuroscience research‎
  • 2007‎

Brain-derived neurotrophic factor (BDNF) has important functions in the development of the nervous system and in brain plasticity-related processes such as memory, learning, and drug addiction. Despite the fact that the function and regulation of rodent BDNF gene expression have received close attention during the last decade, knowledge of the structural organization of mouse and rat BDNF gene has remained incomplete. We have identified and characterized several mouse and rat BDNF transcripts containing novel 5' untranslated exons and introduced a new numbering system for mouse and rat BDNF exons. According to our results both mouse and rat BDNF gene consist of eight 5' untranslated exons and one protein coding 3' exon. Transcription of the gene results in BDNF transcripts containing one of the eight 5' exons spliced to the protein coding exon and in a transcript containing only 5' extended protein coding exon. We also report the distinct tissue-specific expression profiles of each of the mouse and rat 5' exon-specific transcripts in different brain regions and nonneural tissues. In addition, we show that kainic acid-induced seizures that lead to changes in cellular Ca(2+) levels as well as inhibition of DNA methylation and histone deacetylation contribute to the differential regulation of the expression of BDNF transcripts. Finally, we confirm that mouse and rat BDNF gene loci do not encode antisense mRNA transcripts, suggesting that mechanisms of regulation for rodent and human BDNF genes differ substantially.


Tissue-specific and neural activity-regulated expression of human BDNF gene in BAC transgenic mice.

  • Indrek Koppel‎ et al.
  • BMC neuroscience‎
  • 2009‎

Brain-derived neurotrophic factor (BDNF) is a small secreted protein that has important roles in the developing and adult nervous system. Altered expression or changes in the regulation of the BDNF gene have been implicated in a variety of human nervous system disorders. Although regulation of the rodent BDNF gene has been extensively investigated, in vivo studies regarding the human BDNF gene are largely limited to postmortem analysis. Bacterial artificial chromosome (BAC) transgenic mice harboring the human BDNF gene and its regulatory flanking sequences constitute a useful tool for studying human BDNF gene regulation and for identification of therapeutic compounds modulating BDNF expression.


Identification of two highly antigenic epitope markers predicting multiple sclerosis in optic neuritis patients.

  • Helle Sadam‎ et al.
  • EBioMedicine‎
  • 2021‎

Optic neuritis (ON) can occur as an isolated episode or will develop to multiple sclerosis (MS) a chronic autoimmune disease. What predicts ON progression to MS remains poorly understood.


Antibody response to oral biofilm is a biomarker for acute coronary syndrome in periodontal disease.

  • Mariliis Jaago‎ et al.
  • Communications biology‎
  • 2022‎

Cumulative evidence over the last decades have supported the role of gum infections as a risk for future major cardiovascular events. The precise mechanism connecting coronary artery disease (CAD) with periodontal findings has remained elusive. Here, we employ next generation phage display mimotope-variation analysis (MVA) to identify the features of dysfunctional immune system that associate CAD with periodontitis. We identify a fine molecular description of the antigenic epitope repertoires of CAD and its most severe form - acute coronary syndrome (ACS) by profiling the antibody reactivity in a patient cohort with invasive heart examination and complete clinical oral assessment. Specifically, we identify a strong immune response to an EBV VP26 epitope mimicking multiple antigens of oral biofilm as a biomarker for the no-CAD group. With a 2-step biomarker test, we stratify subjects with periodontitis from healthy controls (balanced accuracy 84%), and then assess the risk for ACS with sensitivity 71-89% and specificity 67-100%, depending on the oral health status. Our findings highlight the importance of resolving the immune mechanisms related to severe heart conditions such as ACS in the background of oral health. Prospective validation of these findings will support incorporation of these non-invasive biomarkers into clinical practice.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: