Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 20 papers out of 54 papers

In-frame de novo mutation in BICD2 in two patients with muscular atrophy and arthrogryposis.

  • Daniel C Koboldt‎ et al.
  • Cold Spring Harbor molecular case studies‎
  • 2018‎

We describe two unrelated patients, a 12-yr-old female and a 6-yr-old male, with congenital contractures and severe congenital muscular atrophy. Exome and genome sequencing of the probands and their unaffected parents revealed that they have the same de novo deletion in BICD2 (c.1636_1638delAAT). The variant, which has never been reported, results in an in-frame 3-bp deletion and is predicted to cause loss of an evolutionarily conserved asparagine residue at position 546 in the protein. Missense mutations in BICD2 cause autosomal dominant spinal muscular atrophy, lower-extremity predominant 2 (SMALED2), a disease characterized by muscle weakness and arthrogryposis of early onset and slow progression. The p.Asn546del clusters with four pathogenic missense variants in a region that likely binds molecular motor KIF5A. Protein modeling suggests that removing the highly conserved asparagine residue alters BICD2 protein structure. Our findings support a broader phenotypic spectrum of BICD2 mutations that may include severe manifestations such as cerebral atrophy, seizures, dysmorphic facial features, and profound muscular atrophy.


Phase 2a study of ataluren-mediated dystrophin production in patients with nonsense mutation Duchenne muscular dystrophy.

  • Richard S Finkel‎ et al.
  • PloS one‎
  • 2013‎

Approximately 13% of boys with Duchenne muscular dystrophy (DMD) have a nonsense mutation in the dystrophin gene, resulting in a premature stop codon in the corresponding mRNA and failure to generate a functional protein. Ataluren (PTC124) enables ribosomal readthrough of premature stop codons, leading to production of full-length, functional proteins.


Translation from a DMD exon 5 IRES results in a functional dystrophin isoform that attenuates dystrophinopathy in humans and mice.

  • Nicolas Wein‎ et al.
  • Nature medicine‎
  • 2014‎

Most mutations that truncate the reading frame of the DMD gene cause loss of dystrophin expression and lead to Duchenne muscular dystrophy. However, amelioration of disease severity has been shown to result from alternative translation initiation beginning in DMD exon 6 that leads to expression of a highly functional N-truncated dystrophin. Here we demonstrate that this isoform results from usage of an internal ribosome entry site (IRES) within exon 5 that is glucocorticoid inducible. We confirmed IRES activity by both peptide sequencing and ribosome profiling in muscle from individuals with minimal symptoms despite the presence of truncating mutations. We generated a truncated reading frame upstream of the IRES by exon skipping, which led to synthesis of a functional N-truncated isoform in both human subject-derived cell lines and in a new DMD mouse model, where expression of the truncated isoform protected muscle from contraction-induced injury and corrected muscle force to the same level as that observed in control mice. These results support a potential therapeutic approach for patients with mutations within the 5' exons of DMD.


Eteplirsen for the treatment of Duchenne muscular dystrophy.

  • Jerry R Mendell‎ et al.
  • Annals of neurology‎
  • 2013‎

In prior open-label studies, eteplirsen, a phosphorodiamidate morpholino oligomer, enabled dystrophin production in Duchenne muscular dystrophy (DMD) with genetic mutations amenable to skipping exon 51. The present study used a double-blind placebo-controlled protocol to test eteplirsen's ability to induce dystrophin production and improve distance walked on the 6-minute walk test (6MWT).


RNA interference inhibits DUX4-induced muscle toxicity in vivo: implications for a targeted FSHD therapy.

  • Lindsay M Wallace‎ et al.
  • Molecular therapy : the journal of the American Society of Gene Therapy‎
  • 2012‎

No treatment exists for facioscapulohumeral muscular dystrophy (FSHD), one of the most common inherited muscle diseases. Although FSHD can be debilitating, little effort has been made to develop targeted therapies. This lack of focus on targeted FSHD therapy perpetuated because the genes and pathways involved in the disorder were not understood. Now, more than 2 decades after efforts to decipher the root cause of FSHD began, this barrier to translation is finally lowering. Specifically, several recent studies support an FSHD pathogenesis model involving overexpression of the myopathic DUX4 gene. DUX4 inhibition has therefore emerged as a promising therapeutic strategy for FSHD. In this study, we tested a preclinical RNA interference (RNAi)-based DUX4 gene silencing approach as a prospective treatment for FSHD. We found that adeno-associated viral (AAV) vector-delivered therapeutic microRNAs corrected DUX4-associated myopathy in mouse muscle. These results provide proof-of-principle for RNAi therapy of FSHD through DUX4 inhibition.


Rapid direct sequence analysis of the dystrophin gene.

  • Kevin M Flanigan‎ et al.
  • American journal of human genetics‎
  • 2003‎

Mutations in the dystrophin gene result in both Duchenne and Becker muscular dystrophy (DMD and BMD), as well as X-linked dilated cardiomyopathy. Mutational analysis is complicated by the large size of the gene, which consists of 79 exons and 8 promoters spread over 2.2 million base pairs of genomic DNA. Deletions of one or more exons account for 55%-65% of cases of DMD and BMD, and a multiplex polymerase chain reaction method-currently the most widely available method of mutational analysis-detects approximately 98% of deletions. Detection of point mutations and small subexonic rearrangements has remained challenging. We report the development of a method that allows direct sequence analysis of the dystrophin gene in a rapid, accurate, and economical fashion. This same method, termed "SCAIP" (single condition amplification/internal primer) sequencing, is applicable to other genes and should allow the development of widely available assays for any number of large, multiexon genes.


Physiological properties of hypothalamic MCH neurons identified with selective expression of reporter gene after recombinant virus infection.

  • Anthony N van den Pol‎ et al.
  • Neuron‎
  • 2004‎

Neurons that synthesize melanin-concentrating hormone (MCH) may modulate arousal and energy homeostasis. The scattered MCH neurons have been difficult to study, as they have no defining morphological characteristics. We have developed a viral approach with AAV for selective long-term reporter gene (GFP) expression in MCH neurons, allowing the study of their cellular physiology in hypothalamic slices. MCH neurons showed distinct membrane properties compared to other neurons infected with the same virus with a cytomegalovirus promoter. Transmitters of extrahypothalamic arousal systems, including norepinephrine, serotonin, and the acetylcholine agonist muscarine, evoked direct inhibitory actions. Orexigenic neuropeptide Y was inhibitory by pre- and postsynaptic mechanisms; an anorexigenic melanocortin agonist had no effect. In contrast, the hypothalamic arousal peptide hypocretin/orexin evoked a direct inward current and increased excitatory synaptic activity and spike frequency in the normally silent MCH neurons. Together, these data support the view that MCH neurons may integrate information within the arousal system in favor of energy conservation.


Persistent expression of FLAG-tagged micro dystrophin in nonhuman primates following intramuscular and vascular delivery.

  • Louise R Rodino-Klapac‎ et al.
  • Molecular therapy : the journal of the American Society of Gene Therapy‎
  • 2010‎

Animal models for Duchenne muscular dystrophy (DMD) have species limitations related to assessing function, immune response, and distribution of micro- or mini-dystrophins. Nonhuman primates (NHPs) provide the ideal model to optimize vector delivery across a vascular barrier and provide accurate dose estimates for widespread transduction. To address vascular delivery and dosing in rhesus macaques, we have generated a fusion construct that encodes an eight amino-acid FLAG epitope at the C-terminus of micro-dystrophin to facilitate translational studies targeting DMD. Intramuscular (IM) injection of AAV8.MCK.micro-dys.FLAG in the tibialis anterior (TA) of macaques demonstrated robust gene expression, with muscle transduction (50-79%) persisting for up to 5 months. Success by IM injection was followed by targeted vascular delivery studies using a fluoroscopy-guided catheter threaded through the femoral artery. Three months after gene transfer, >80% of muscle fibers showed gene expression in the targeted muscle. No cellular immune response to AAV8 capsid, micro-dystrophin, or the FLAG tag was detected by interferon-gamma (IFN-gamma) enzyme-linked immunosorbent spot (ELISpot) at any time point with either route. In summary, an epitope-tagged micro-dystrophin cassette enhances the ability to evaluate site-specific localization and distribution of gene expression in the NHP in preparation for vascular delivery clinical trials.


Vector-mediated gene transfer engenders long-lived neutralizing activity and protection against SIV infection in monkeys.

  • Philip R Johnson‎ et al.
  • Nature medicine‎
  • 2009‎

The key to an effective HIV vaccine is development of an immunogen that elicits persisting antibodies with broad neutralizing activity against field strains of the virus. Unfortunately, very little progress has been made in finding or designing such immunogens. Using the simian immunodeficiency virus (SIV) model, we have taken a markedly different approach: delivery to muscle of an adeno-associated virus gene transfer vector expressing antibodies or antibody-like immunoadhesins having predetermined SIV specificity. With this approach, SIV-specific molecules are endogenously synthesized in myofibers and passively distributed to the circulatory system. Using such an approach in monkeys, we have now generated long-lasting neutralizing activity in serum and have observed complete protection against intravenous challenge with virulent SIV. In essence, this strategy bypasses the adaptive immune system and holds considerable promise as a unique approach to an effective HIV vaccine.


Clinical Outcomes in Duchenne Muscular Dystrophy: A Study of 5345 Patients from the TREAT-NMD DMD Global Database.

  • Zaïda Koeks‎ et al.
  • Journal of neuromuscular diseases‎
  • 2017‎

Recent short-term clinical trials in patients with Duchenne Muscular Dystrophy (DMD) have indicated greater disease variability in terms of progression than expected. In addition, as average life-expectancy increases, reliable data is required on clinical progression in the older DMD population.


Systemic AAV-Mediated β-Sarcoglycan Delivery Targeting Cardiac and Skeletal Muscle Ameliorates Histological and Functional Deficits in LGMD2E Mice.

  • Eric R Pozsgai‎ et al.
  • Molecular therapy : the journal of the American Society of Gene Therapy‎
  • 2017‎

Limb-girdle muscular dystrophy type 2E (LGMD2E), resulting from mutations in β-sarcoglycan (SGCB), is a progressive dystrophy with deteriorating muscle function, respiratory failure, and cardiomyopathy in 50% or more of LGMD2E patients. SGCB knockout mice share many of the phenotypic deficiencies of LGMD2E patients. To investigate systemic SGCB gene transfer to treat skeletal and cardiac muscle deficits, we designed a self-complementary AAVrh74 vector containing a codon-optimized human SGCB transgene driven by a muscle-specific promoter. We delivered scAAV.MHCK7.hSGCB through the tail vein of SGCB-/- mice to provide a rationale for a clinical trial that would lead to clinically meaningful results. This led to 98.1% transgene expression across all muscles that was accompanied by improvements in histopathology. Serum creatine kinase (CK) levels were reduced following treatment by 85.5%. Diaphragm force production increased by 94.4%, kyphoscoliosis of the spine was significantly reduced by 48.1%, overall ambulation increased by 57%, and vertical rearing increased dramatically by 132% following treatment. Importantly, no adverse effects were seen in muscle of wild-type mice injected systemically with scAAV.hSGCB. In this well-defined model of LGMD2E, we have demonstrated the efficacy and safety of systemic scAAV.hSGCB delivery, and these findings have established a path for clinically beneficial AAV-mediated gene therapy for LGMD2E.


Dose-Escalation Study of Systemically Delivered rAAVrh74.MHCK7.micro-dystrophin in the mdx Mouse Model of Duchenne Muscular Dystrophy.

  • Rachael A Potter‎ et al.
  • Human gene therapy‎
  • 2021‎

Duchenne muscular dystrophy (DMD) is a rare, X-linked, fatal, degenerative neuromuscular disease caused by mutations in the DMD gene. More than 2,000 mutations of the DMD gene are responsible for progressive loss of muscle strength, loss of ambulation, and generally respiratory and cardiac failure by age 30. Recently, gene transfer therapy has received widespread interest as a disease-modifying treatment for all patients with DMD. We designed an adeno-associated virus vector (rAAVrh74) containing a codon-optimized human micro-dystrophin transgene driven by a skeletal and cardiac muscle-specific promoter, MHCK7. To test the efficacy of rAAVrh74.MHCK7.micro-dystrophin, we evaluated systemic injections in mdx (dystrophin-null) mice at low (2 × 1012 vector genome [vg] total dose, 8 × 1013 vg/kg), intermediate (6 × 1012 vg total dose, 2 × 1014 vg/kg), and high doses (1.2 × 1013 vg total dose, 6 × 1014 vg/kg). Three months posttreatment, specific force increased in the diaphragm (DIA) and tibialis anterior muscle, with intermediate and high doses eliciting force outputs at wild-type (WT) levels. Histological improvement included reductions in fibrosis and normalization of myofiber size, specifically in the DIA, where results for low and intermediate doses were not significantly different from the WT. Significant reduction in central nucleation was also observed, although complete normalization to WT was not seen. No vector-associated toxicity was reported either by clinical or organ-specific laboratory assessments or following formal histopathology. The findings in this preclinical study provided proof of principle for safety and efficacy of systemic delivery of rAAVrh74.MHCK7.micro-dystrophin at high vector titers, supporting initiation of a Phase I/II safety study in boys with DMD.


Assessment of rAAVrh.74.MHCK7.micro-dystrophin Gene Therapy Using Magnetic Resonance Imaging in Children With Duchenne Muscular Dystrophy.

  • Rebecca J Willcocks‎ et al.
  • JAMA network open‎
  • 2021‎

This case-control study uses magnetic resonance imaging and spectroscopy to evaluate the association between treatment with recombinant adeno-associated virus serotype rh74 (rAAVrh74) and muscle quality in children with Duchenne muscular dystrophy.


Systemic γ-sarcoglycan AAV gene transfer results in dose-dependent correction of muscle deficits in the LGMD 2C/R5 mouse model.

  • Young-Eun Seo‎ et al.
  • Molecular therapy. Methods & clinical development‎
  • 2023‎

Limb-girdle muscular dystrophy (LGMD) type 2C/R5 results from mutations in the γ-sarcoglycan (SGCG) gene and is characterized by muscle weakness and progressive wasting. Loss of functional γ-sarcoglycan protein in the dystrophin-associated protein complex destabilizes the sarcolemma, leading to eventual myofiber death. The SGCG knockout mouse (SGCG -/-) has clinical-pathological features that replicate the human disease, making it an ideal model for translational studies. We designed a self-complementary rAAVrh74 vector containing a codon-optimized human SGCG transgene driven by the muscle-specific MHCK7 promoter (SRP-9005) to investigate adeno-associated virus (AAV)-mediated SGCG gene transfer in SGCG -/- mice as proof of principle for LGMD 2C/R5. Gene transfer therapy resulted in widespread transgene expression in skeletal muscle and heart, improvements in muscle histopathology characterized by decreased central nuclei and fibrosis, and normalized fiber size. Histopathologic improvements were accompanied by functional improvements, including increased ambulation and force production and resistance to injury of the tibialis anterior and diaphragm muscles. This study demonstrates successful systemic delivery of the hSGCG transgene in SGCG -/- mice, with functional protein expression, reconstitution of the sarcoglycan complex, and corresponding physiological and functional improvements, which will help establish a minimal effective dose for translation of SRP-9005 gene transfer therapy in patients with LGMD 2C/R5.


CRISPR-Cas9 homology-independent targeted integration of exons 1-19 restores full-length dystrophin in mice.

  • Anthony A Stephenson‎ et al.
  • Molecular therapy. Methods & clinical development‎
  • 2023‎

Duchenne muscular dystrophy is an X-linked disorder typically caused by out-of-frame mutations in the DMD gene. Most of these are deletions of one or more exons, which can theoretically be corrected through CRISPR-Cas9-mediated knockin. Homology-independent targeted integration is a mechanism for achieving such a knockin without reliance on homology-directed repair pathways, which are inactive in muscle. We designed a system based on insertion into intron 19 of a DNA fragment containing a pre-spliced mega-exon encoding DMD exons 1-19, along with the MHCK7 promoter, and delivered it via a pair of AAV9 vectors in mice carrying a Dmd exon 2 duplication. Maximal efficiency was achieved using a Cas9:donor adeno-associated virus (AAV) ratio of 1:5, with Cas9 under the control of the SPc5-12 promoter. This approach achieved editing of 1.4% of genomes in the heart, leading to 30% correction at the transcript level and restoration of 11% of normal dystrophin levels. Treatment efficacy was lower in skeletal muscles. Sequencing additionally revealed integration of fragmentary and recombined AAV genomes at the target site. These data provide proof of concept for a gene editing system that could restore full-length dystrophin in individuals carrying mutations upstream of intron 19, accounting for approximately 25% of Duchenne muscular dystrophy patients.


204th ENMC International Workshop on Biomarkers in Duchenne Muscular Dystrophy 24-26 January 2014, Naarden, The Netherlands.

  • Alessandra Ferlini‎ et al.
  • Neuromuscular disorders : NMD‎
  • 2015‎

No abstract available


Systemic Delivery of scAAV8-Encoded MiR-29a Ameliorates Hepatic Fibrosis in Carbon Tetrachloride-Treated Mice.

  • Matthew K Knabel‎ et al.
  • PloS one‎
  • 2015‎

Fibrosis refers to the accumulation of excess extracellular matrix (ECM) components and represents a key feature of many chronic inflammatory diseases. Unfortunately, no currently available treatments specifically target this important pathogenic mechanism. MicroRNAs (miRNAs) are short, non-coding RNAs that post-transcriptionally repress target gene expression and the development of miRNA-based therapeutics is being actively pursued for a diverse array of diseases. Because a single miRNA can target multiple genes, often within the same pathway, variations in the level of individual miRNAs can potently influence disease phenotypes. Members of the miR-29 family, which include miR-29a, miR-29b and miR-29c, are strong inhibitors of ECM synthesis and fibrosis-associated decreases in miR-29 have been reported in multiple organs. We observed downregulation of miR-29a/b/c in fibrotic livers of carbon tetrachloride (CCl4) treated mice as well as in isolated human hepatocytes exposed to the pro-fibrotic cytokine TGF-β. Importantly, we demonstrate that a single systemic injection of a miR-29a expressing adeno-associated virus (AAV) can prevent and even reverse histologic and biochemical evidence of fibrosis despite continued exposure to CCl4. The observed therapeutic benefits were associated with AAV transduction of hepatocytes but not hepatic stellate cells, which are the main ECM producing cells in fibroproliferative liver diseases. Our data therefore demonstrate that delivery of miR-29 to the hepatic parenchyma using a clinically relevant gene delivery platform protects injured livers against fibrosis and, given the consistent fibrosis-associated downregulation of miR-29, suggests AAV-miR-29 based therapies may be effective in treating a variety of fibroproliferative disorders.


Homologous recombination mediates functional recovery of dysferlin deficiency following AAV5 gene transfer.

  • William E Grose‎ et al.
  • PloS one‎
  • 2012‎

The dysferlinopathies comprise a group of untreatable muscle disorders including limb girdle muscular dystrophy type 2B, Miyoshi myopathy, distal anterior compartment syndrome, and rigid spine syndrome. As with other forms of muscular dystrophy, adeno-associated virus (AAV) gene transfer is a particularly auspicious treatment strategy, however the size of the DYSF cDNA (6.5 kb) negates packaging into traditional AAV serotypes known to express well in muscle (i.e. rAAV1, 2, 6, 8, 9). Potential advantages of a full cDNA versus a mini-gene include: maintaining structural-functional protein domains, evading protein misfolding, and avoiding novel epitopes that could be immunogenic. AAV5 has demonstrated unique plasticity with regards to packaging capacity and recombination of virions containing homologous regions of cDNA inserts has been implicated in the generation of full-length transcripts. Herein we show for the first time in vivo that homologous recombination following AAV5.DYSF gene transfer leads to the production of full length transcript and protein. Moreover, gene transfer of full-length dysferlin protein in dysferlin deficient mice resulted in expression levels sufficient to correct functional deficits in the diaphragm and importantly in skeletal muscle membrane repair. Intravascular regional gene transfer through the femoral artery produced high levels of transduction and enabled targeting of specific muscle groups affected by the dysferlinopathies setting the stage for potential translation to clinical trials. We provide proof of principle that AAV5 mediated delivery of dysferlin is a highly promising strategy for treatment of dysferlinopathies and has far-reaching implications for the therapeutic delivery of other large genes.


Dp412e: a novel human embryonic dystrophin isoform induced by BMP4 in early differentiated cells.

  • Emmanuelle Massouridès‎ et al.
  • Skeletal muscle‎
  • 2015‎

Duchenne muscular dystrophy (DMD) is a devastating X-linked recessive genetic myopathy. DMD physiopathology is still not fully understood and a prenatal onset is suspected but difficult to address.


A translational approach for limb vascular delivery of the micro-dystrophin gene without high volume or high pressure for treatment of Duchenne muscular dystrophy.

  • Louise R Rodino-Klapac‎ et al.
  • Journal of translational medicine‎
  • 2007‎

Duchenne muscular dystrophy (DMD) is an X-linked recessive disorder with monogenic mutations setting the stage for successful gene therapy treatment. We have completed a study that directly deals with the following key issues that can be directly adapted to a gene therapy clinical trial using rAAV considering the following criteria: 1) A regional vascular delivery approach that will protect the patient from widespread dissemination of virus; 2) an approach to potentially facilitate safe passage of the virus for efficient skeletal muscle transduction; 3) the use of viral doses to accommodate current limitations imposed by vector production methods; 4) and at the same time, achieve a clinically meaningful outcome by transducing multiple muscles in the lower limb to prolong ambulation.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: