Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 20 papers out of 31 papers

Recombinant TAT-CD137 Ligand Cytoplasmic Domain Fusion Protein Induces the Production of IL-6 and TNF-α in Peritoneal Macrophages.

  • Jung Dae Kim‎ et al.
  • Immune network‎
  • 2011‎

The ligand for CD137 (CD137L; also called 4-1BBL) is mainly expressed on activated APCs such as dendritic cells, B cells and macrophages. Even though CD137L functions as a trigger of the CD137 signaling pathway for T cell activation and expansion, engagement of CD137L can deliver a signal leading to the production of proinflammatory cytokines in macrophages.


FABP7 expression in normal and stab-injured brain cortex and its role in astrocyte proliferation.

  • Kazem Sharifi‎ et al.
  • Histochemistry and cell biology‎
  • 2011‎

Reactive gliosis, in which astrocytes as well as other types of glial cells undergo massive proliferation, is a common hallmark of all brain pathologies. Brain-type fatty acid-binding protein (FABP7) is abundantly expressed in neural stem cells and astrocytes of developing brain, suggesting its role in differentiation and/or proliferation of glial cells through regulation of lipid metabolism and/or signaling. However, the role of FABP7 in proliferation of glial cells during reactive gliosis is unknown. In this study, we examined the expression of FABP7 in mouse cortical stab injury model and also the phenotype of FABP7-KO mice in glial cell proliferation. Western blotting showed that FABP7 expression was increased significantly in the injured cortex compared with the contralateral side. By immunohistochemistry, FABP7 was localized to GFAP(+) astrocytes (21% of FABP7(+) cells) and NG2(+) oligodendrocyte progenitor cells (62%) in the normal cortex. In the injured cortex there was no change in the population of FABP7(+)/NG2(+) cells, while there was a significant increase in FABP7(+)/GFAP(+) cells. In the stab-injured cortex of FABP7-KO mice there was decrease in the total number of reactive astrocytes and in the number of BrdU(+) astrocytes compared with wild-type mice. Primary cultured astrocytes from FABP7-KO mice also showed a significant decrease in proliferation and omega-3 fatty acid incorporation compared with wild-type astrocytes. Overall, these data suggest that FABP7 is involved in the proliferation of astrocytes by controlling cellular fatty acid homeostasis.


Single-cell longitudinal analysis of SARS-CoV-2 infection in human airway epithelium identifies target cells, alterations in gene expression, and cell state changes.

  • Neal G Ravindra‎ et al.
  • PLoS biology‎
  • 2021‎

There are currently limited Food and Drug Administration (FDA)-approved drugs and vaccines for the treatment or prevention of Coronavirus Disease 2019 (COVID-19). Enhanced understanding of Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) infection and pathogenesis is critical for the development of therapeutics. To provide insight into viral replication, cell tropism, and host-viral interactions of SARS-CoV-2, we performed single-cell (sc) RNA sequencing (RNA-seq) of experimentally infected human bronchial epithelial cells (HBECs) in air-liquid interface (ALI) cultures over a time course. This revealed novel polyadenylated viral transcripts and highlighted ciliated cells as a major target at the onset of infection, which we confirmed by electron and immunofluorescence microscopy. Over the course of infection, the cell tropism of SARS-CoV-2 expands to other epithelial cell types including basal and club cells. Infection induces cell-intrinsic expression of type I and type III interferons (IFNs) and interleukin (IL)-6 but not IL-1. This results in expression of interferon-stimulated genes (ISGs) in both infected and bystander cells. This provides a detailed characterization of genes, cell types, and cell state changes associated with SARS-CoV-2 infection in the human airway.


The steroid hormone estriol (E3) regulates epigenetic programming of fetal mouse brain and reproductive tract.

  • Yuping Zhou‎ et al.
  • BMC biology‎
  • 2022‎

Estriol (E3) is a steroid hormone formed only during pregnancy in primates including humans. Although E3 is synthesized at large amounts through a complex pathway involving the fetus and placenta, it is not required for the maintenance of pregnancy and has classically been considered virtually inactive due to associated very weak canonical estrogen signaling. However, estrogen exposure during pregnancy may have an effect on organs both within and outside the reproductive system, and compounds with binding affinity for estrogen receptors weaker than E3 have been found to impact reproductive organs and the brain. Here, we explore potential effects of E3 on fetal development using mouse as a model system.


TET3 epigenetically controls feeding and stress response behaviors via AGRP neurons.

  • Di Xie‎ et al.
  • The Journal of clinical investigation‎
  • 2022‎

The TET family of dioxygenases promote DNA demethylation by oxidizing 5-methylcytosine to 5-hydroxymethylcytosine (5hmC). Hypothalamic agouti-related peptide-expressing (AGRP-expressing) neurons play an essential role in driving feeding, while also modulating nonfeeding behaviors. Besides AGRP, these neurons produce neuropeptide Y (NPY) and the neurotransmitter GABA, which act in concert to stimulate food intake and decrease energy expenditure. Notably, AGRP, NPY, and GABA can also elicit anxiolytic effects. Here, we report that in adult mouse AGRP neurons, CRISPR-mediated genetic ablation of Tet3, not previously known to be involved in central control of appetite and metabolism, induced hyperphagia, obesity, and diabetes, in addition to a reduction of stress-like behaviors. TET3 deficiency activated AGRP neurons, simultaneously upregulated the expression of Agrp, Npy, and the vesicular GABA transporter Slc32a1, and impeded leptin signaling. In particular, we uncovered a dynamic association of TET3 with the Agrp promoter in response to leptin signaling, which induced 5hmC modification that was associated with a chromatin-modifying complex leading to transcription inhibition, and this regulation occurred in both the mouse models and human cells. Our results unmasked TET3 as a critical central regulator of appetite and energy metabolism and revealed its unexpected dual role in the control of feeding and other complex behaviors through AGRP neurons.


Microglial UCP2 Mediates Inflammation and Obesity Induced by High-Fat Feeding.

  • Jung Dae Kim‎ et al.
  • Cell metabolism‎
  • 2019‎

Microglia play a crucial role in immune responses, including inflammation. Diet-induced obesity (DIO) triggers microglia activation and hypothalamic inflammation as early as 3 days after high-fat diet (HFD) exposure, before changes in body weight occur. The intracellular mechanism(s) responsible for HFD-induced microglia activation is ill defined. Here, we show that in vivo, HFD induced a rapid and transient increase in uncoupling protein 2 (Ucp2) mRNA expression together with changes in mitochondrial dynamics. Selective microglial deletion of Ucp2 prevented changes in mitochondrial dynamics and function, microglia activation, and hypothalamic inflammation. In association with these, male and female mice were protected from HFD-induced obesity, showing decreased feeding and increased energy expenditure that were associated with changes in the synaptic input organization and activation of the anorexigenic hypothalamic POMC neurons and astrogliosis. Together, our data point to a fuel-availability-driven mitochondrial mechanism as a major player of microglia activation in the central regulation of DIO.


Inhibition of Fatty Acid Synthase Decreases Expression of Stemness Markers in Glioma Stem Cells.

  • Yuki Yasumoto‎ et al.
  • PloS one‎
  • 2016‎

Cellular metabolic changes, especially to lipid metabolism, have recently been recognized as a hallmark of various cancer cells. However, little is known about the significance of cellular lipid metabolism in the regulation of biological activity of glioma stem cells (GSCs). In this study, we examined the expression and role of fatty acid synthase (FASN), a key lipogenic enzyme, in GSCs. In the de novo lipid synthesis assay, GSCs exhibited higher lipogenesis than differentiated non-GSCs. Western blot and immunocytochemical analyses revealed that FASN is strongly expressed in multiple lines of patient-derived GSCs (G144 and Y10), but its expression was markedly reduced upon differentiation. When GSCs were treated with 20 μM cerulenin, a pharmacological inhibitor of FASN, their proliferation and migration were significantly suppressed and de novo lipogenesis decreased. Furthermore, following cerulenin treatment, expression of the GSC markers nestin, Sox2 and fatty acid binding protein (FABP7), markers of GCSs, decreased while that of glial fibrillary acidic protein (GFAP) expression increased. Taken together, our results indicate that FASN plays a pivotal role in the maintenance of GSC stemness, and FASN-mediated de novo lipid biosynthesis is closely associated with tumor growth and invasion in glioblastoma.


Free access to a running-wheel advances the phase of behavioral and physiological circadian rhythms and peripheral molecular clocks in mice.

  • Yuki Yasumoto‎ et al.
  • PloS one‎
  • 2015‎

Behavioral and physiological circadian rhythms are controlled by endogenous oscillators in animals. Voluntary wheel-running in rodents is thought to be an appropriate model of aerobic exercise in humans. We evaluated the effects of chronic voluntary exercise on the circadian system by analyzing temporal profiles of feeding, core body temperature, plasma hormone concentrations and peripheral expression of clock and clock-controlled genes in mice housed under sedentary (SED) conditions or given free access to a running-wheel (RW) for four weeks. Voluntary wheel-running activity advanced the circadian phases of increases in body temperature, food intake and corticosterone secretion in the mice. The circadian expression of clock and clock-controlled genes was tissue- and gene-specifically affected in the RW mice. The temporal expression of E-box-dependent circadian clock genes such as Per1, Per2, Nr1d1 and Dbp were slightly, but significantly phase-advanced in the liver and white adipose tissue, but not in brown adipose tissue and skeletal muscle. Peak levels of Per1, Per2 and Nr1d1 expression were significantly increased in the skeletal muscle of RW mice. The circadian phase and levels of hepatic mRNA expression of the clock-controlled genes that are involved in cholesterol and fatty acid metabolism significantly differed between SED and RW mice. These findings indicated that endogenous clock-governed voluntary wheel-running activity provides feedback to the central circadian clock that systemically governs behavioral and physiological rhythms.


Intracellular energy status regulates activity in hypocretin/orexin neurones: a link between energy and behavioural states.

  • Zhong-Wu Liu‎ et al.
  • The Journal of physiology‎
  • 2011‎

The hypocretin/orexin (Hcrt)-containing neurones within the lateral hypothalamus integrate nutritional, energetic and behavioural cues to generate the final output in order to exert their functions. It is still not clear how Hcrt neurones monitor changes in energy status in animals. In brain slices from transgenic mice expressing green fluorescent protein (GFP) exclusively in Hcrt neurones, we examined the roles of intracellular levels of ATP ([ATP](i)) in regulating activities in these cells with conventional and perforated whole-cell recording. By using 'ATP clamp' we demonstrated that membrane potential (V(m)) correlated with the [ATP](i) in Hcrt neurones. Perforated recording revealed a V(m) of -46.1 ± 1.6 mV (n = 18), close to the level measured with an [ATP](i) equal to 5-6 mm (-48.7 ± 1.4 mV, n = 16, 5 mm ATP), suggesting that a unique demand for energy is required to maintain normal functionality in Hcrt cells. A direct disruption of ATP production or reduction in ambient glucose levels resulted in an inhibition of activity in Hcrt neurones. The V(m) was significantly depolarized in Hcrt neurones in sleep-deprived mice as compared with controls (P < 0.01, t test), which was eliminated by experimental manipulations causing the same level of [ATP](i) and K(ATP) channel opening in both groups, suggesting a decrease during sleep and an increase during sustained wakefulness in [ATP](i) in Hcrt cells. In summary, these data demonstrate that a delicate control of activity by monitoring the availability of intracellular energy stores in Hcrt cells may serve as a novel mechanism regulating energy expenditure and behavioural state dependent upon the energy state in animals.


UCP2 Regulates Mitochondrial Fission and Ventromedial Nucleus Control of Glucose Responsiveness.

  • Chitoku Toda‎ et al.
  • Cell‎
  • 2016‎

The ventromedial nucleus of the hypothalamus (VMH) plays a critical role in regulating systemic glucose homeostasis. How neurons in this brain area adapt to the changing metabolic environment to regulate circulating glucose levels is ill defined. Here, we show that glucose load results in mitochondrial fission and reduced reactive oxygen species in VMH neurons mediated by dynamin-related peptide 1 (DRP1) under the control of uncoupling protein 2 (UCP2). Probed by genetic manipulations and chemical-genetic control of VMH neuronal circuitry, we unmasked that this mitochondrial adaptation determines the size of the pool of glucose-excited neurons in the VMH and that this process regulates systemic glucose homeostasis. Thus, our data unmasked a critical cellular biological process controlled by mitochondrial dynamics in VMH regulation of systemic glucose homeostasis.


Prolyl carboxypeptidase in Agouti-related Peptide neurons modulates food intake and body weight.

  • Giuseppe Bruschetta‎ et al.
  • Molecular metabolism‎
  • 2018‎

Prolyl carboxypeptidase (PRCP) plays a role in the regulation of energy metabolism by inactivating hypothalamic α-melanocyte stimulating hormone (α-MSH) levels. Although detected in the arcuate nucleus, limited PRCP expression has been observed in the arcuate POMC neurons, and its site of action in regulating metabolism is still ill-defined.


Neuroinvasion of SARS-CoV-2 in human and mouse brain.

  • Eric Song‎ et al.
  • The Journal of experimental medicine‎
  • 2021‎

Although COVID-19 is considered to be primarily a respiratory disease, SARS-CoV-2 affects multiple organ systems including the central nervous system (CNS). Yet, there is no consensus on the consequences of CNS infections. Here, we used three independent approaches to probe the capacity of SARS-CoV-2 to infect the brain. First, using human brain organoids, we observed clear evidence of infection with accompanying metabolic changes in infected and neighboring neurons. However, no evidence for type I interferon responses was detected. We demonstrate that neuronal infection can be prevented by blocking ACE2 with antibodies or by administering cerebrospinal fluid from a COVID-19 patient. Second, using mice overexpressing human ACE2, we demonstrate SARS-CoV-2 neuroinvasion in vivo. Finally, in autopsies from patients who died of COVID-19, we detect SARS-CoV-2 in cortical neurons and note pathological features associated with infection with minimal immune cell infiltrates. These results provide evidence for the neuroinvasive capacity of SARS-CoV-2 and an unexpected consequence of direct infection of neurons by SARS-CoV-2.


Systematic discovery and functional interrogation of SARS-CoV-2 viral RNA-host protein interactions during infection.

  • Ryan A Flynn‎ et al.
  • bioRxiv : the preprint server for biology‎
  • 2020‎

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is the cause of a pandemic with growing global mortality. There is an urgent need to understand the molecular pathways required for host infection and anti-viral immunity. Using comprehensive identification of RNA-binding proteins by mass spectrometry (ChIRP-MS), we identified 309 host proteins that bind the SARS-CoV-2 RNA during active infection. Integration of this data with viral ChIRP-MS data from three other positive-sense RNA viruses defined pan-viral and SARS-CoV-2-specific host interactions. Functional interrogation of these factors with a genome-wide CRISPR screen revealed that the vast majority of viral RNA-binding proteins protect the host from virus-induced cell death, and we identified known and novel anti-viral proteins that regulate SARS-CoV-2 pathogenicity. Finally, our RNA-centric approach demonstrated a physical connection between SARS-CoV-2 RNA and host mitochondria, which we validated with functional and electron microscopy data, providing new insights into a more general virus-specific protein logic for mitochondrial interactions. Altogether, these data provide a comprehensive catalogue of SARS-CoV-2 RNA-host protein interactions, which may inform future studies to understand the mechanisms of viral pathogenesis, as well as nominate host pathways that could be targeted for therapeutic benefit.


The role of fatty acid binding protein 7 in spinal cord astrocytes in a mouse model of experimental autoimmune encephalomyelitis.

  • Kenyu Kamizato‎ et al.
  • Neuroscience‎
  • 2019‎

Fatty acid binding protein 7 (FABP7) is expressed in astrocytes of the developing and mature central nervous system, and modulates astrocyte function by controlling intracellular fatty acid homeostasis. Astrocytes in the spinal cord have an important role in the process of myelin degeneration and regeneration. In the present study, the authors examined the role of FABP7 in astrocytes in a mouse model of experimental autoimmune encephalomyelitis (EAE), which is an established model of multiple sclerosis (MS). FABP7 was expressed in the white matter astrocytes and increased after EAE onset; particularly strong expression was observed in demyelinating regions. In FABP7-knockout (KO) mice, the onset of EAE symptoms occurred earlier than in wild type (WT) mice, and mRNA expression levels of inflammatory cytokines (IL-17 and TNF-α) were higher in FABP7-KO lumbar spinal cord than in WT lumbar spinal cord at early stage of EAE. Interestingly, however, the clinical score was significantly reduced in FABP7-KO mice compared with WT mice in the late phase of EAE. Moreover, the area exhibiting expression of fibronectin, which is an extracellular matrix protein mainly produced by astrocytes and inhibits remyelination of oligodendrocytes, was significantly decreased in FABP7-KO compared with WT mice. Collectively, FABP7 in astrocyte may have a role to protect from the induction of inflammation leading to demyelination in CNS at early phase of EAE. Moreover, FABP7 may be involved in the regulation of fibronectin production through the modification of astrocyte activation at late phase of EAE.


Ventromedial hypothalamic OGT drives adipose tissue lipolysis and curbs obesity.

  • Qi Wang‎ et al.
  • Science advances‎
  • 2022‎

The ventromedial hypothalamus (VMH) is known to regulate body weight and counterregulatory response. However, how VMH neurons regulate lipid metabolism and energy balance remains unknown. O-linked β-d-N-acetylglucosamine (O-GlcNAc) modification (O-GlcNAcylation), catalyzed by O-GlcNAc transferase (OGT), is considered a cellular sensor of nutrients and hormones. Here, we report that genetic ablation of OGT in VMH neurons inhibits neuronal excitability. Mice with VMH neuron-specific OGT deletion show rapid weight gain, increased adiposity, and reduced energy expenditure, without significant changes in food intake or physical activity. The obesity phenotype is associated with adipocyte hypertrophy and reduced lipolysis of white adipose tissues. In addition, OGT deletion in VMH neurons down-regulates the sympathetic activity and impairs the sympathetic innervation of white adipose tissues. These findings identify OGT in the VMH as a homeostatic set point that controls body weight and underscore the importance of the VMH in regulating lipid metabolism through white adipose tissue-specific innervation.


UCP2-dependent redox sensing in POMC neurons regulates feeding.

  • Nal Ae Yoon‎ et al.
  • Cell reports‎
  • 2022‎

Paradoxically, glucose, the primary driver of satiety, activates a small population of anorexigenic pro-opiomelanocortin (POMC) neurons. Here, we show that lactate levels in the circulation and in the cerebrospinal fluid are elevated in the fed state and the addition of lactate to glucose activates the majority of POMC neurons while increasing cytosolic NADH generation, mitochondrial respiration, and extracellular pyruvate levels. Inhibition of lactate dehydrogenases diminishes mitochondrial respiration, NADH production, and POMC neuronal activity. However, inhibition of the mitochondrial pyruvate carrier has no effect. POMC-specific downregulation of Ucp2 (Ucp2PomcKO), a molecule regulated by fatty acid metabolism and shown to play a role as transporter in the malate-aspartate shuttle, abolishes lactate- and glucose-sensing of POMC neurons. Ucp2PomcKO mice have impaired glucose metabolism and are prone to obesity on a high-fat diet. Altogether, our data show that lactate through redox signaling and blocking mitochondrial glucose utilization activates POMC neurons to regulate feeding and glucose metabolism.


Drp1 is required for AgRP neuronal activity and feeding.

  • Sungho Jin‎ et al.
  • eLife‎
  • 2021‎

The hypothalamic orexigenic Agouti-related peptide (AgRP)-expressing neurons are crucial for the regulation of whole-body energy homeostasis. Here, we show that fasting-induced AgRP neuronal activation is associated with dynamin-related peptide 1 (DRP1)-mediated mitochondrial fission and mitochondrial fatty acid utilization in AgRP neurons. In line with this, mice lacking Dnm1l in adult AgRP neurons (Drp1 cKO) show decreased fasting- or ghrelin-induced AgRP neuronal activity and feeding and exhibited a significant decrease in body weight, fat mass, and feeding accompanied by a significant increase in energy expenditure. In support of the role for mitochondrial fission and fatty acids oxidation, Drp1 cKO mice showed attenuated palmitic acid-induced mitochondrial respiration. Altogether, our data revealed that mitochondrial dynamics and fatty acids oxidation in hypothalamic AgRP neurons is a critical mechanism for AgRP neuronal function and body-weight regulation.


Discovery and functional interrogation of SARS-CoV-2 RNA-host protein interactions.

  • Ryan A Flynn‎ et al.
  • Cell‎
  • 2021‎

SARS-CoV-2 is the cause of a pandemic with growing global mortality. Using comprehensive identification of RNA-binding proteins by mass spectrometry (ChIRP-MS), we identified 309 host proteins that bind the SARS-CoV-2 RNA during active infection. Integration of this data with ChIRP-MS data from three other RNA viruses defined viral specificity of RNA-host protein interactions. Targeted CRISPR screens revealed that the majority of functional RNA-binding proteins protect the host from virus-induced cell death, and comparative CRISPR screens across seven RNA viruses revealed shared and SARS-specific antiviral factors. Finally, by combining the RNA-centric approach and functional CRISPR screens, we demonstrated a physical and functional connection between SARS-CoV-2 and mitochondria, highlighting this organelle as a general platform for antiviral activity. Altogether, these data provide a comprehensive catalog of functional SARS-CoV-2 RNA-host protein interactions, which may inform studies to understand the host-virus interface and nominate host pathways that could be targeted for therapeutic benefit.


Ucp2-dependent microglia-neuronal coupling controls ventral hippocampal circuit function and anxiety-like behavior.

  • Yuki Yasumoto‎ et al.
  • Molecular psychiatry‎
  • 2021‎

Microglia have been implicated in synapse remodeling by phagocytosis of synaptic elements in the adult brain, but the mechanisms involved in the regulation of this process are ill-defined. By examining microglia-neuronal interaction in the ventral hippocampus, we found a significant reduction in spine synapse number during the light phase of the light/dark cycle accompanied by increased microglia-synapse contacts and an elevated amount of microglial phagocytic inclusions. This was followed by a transient rise in microglial production of reactive oxygen species (ROS) and a concurrent increase in expression of uncoupling protein 2 (Ucp2), a regulator of mitochondrial ROS generation. Conditional ablation of Ucp2 from microglia hindered phasic elimination of spine synapses with consequent accumulations of ROS and lysosome-lipid droplet complexes, which resulted in hippocampal neuronal circuit dysfunctions assessed by electrophysiology, and altered anxiety-like behavior. These observations unmasked a novel and chronotypical interaction between microglia and neurons involved in the control of brain functions.


Dopamine neuronal protection in the mouse Substantia nigra by GHSR is independent of electric activity.

  • Bernardo Stutz‎ et al.
  • Molecular metabolism‎
  • 2019‎

Dopamine neurons in the Substantia nigra (SN) play crucial roles in control of voluntary movement. Extensive degeneration of this neuronal population is the cause of Parkinson's disease (PD). Many factors have been linked to SN DA neuronal survival, including neuronal pacemaker activity (responsible for maintaining basal firing and DA tone) and mitochondrial function. Dln-101, a naturally occurring splice variant of the human ghrelin gene, targets the ghrelin receptor (GHSR) present in the SN DA cells. Ghrelin activation of GHSR has been shown to protect SN DA neurons against 1-methyl-4-phenyl-1,2,5,6 tetrahydropyridine (MPTP) treatment. We decided to compare the actions of Dln-101 with ghrelin and identify the mechanisms associated with neuronal survival.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: