Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 11 papers out of 11 papers

Disruption of Notch signaling aggravates irradiation-induced bone marrow injury, which is ameliorated by a soluble Dll1 ligand through Csf2rb2 upregulation.

  • Juan-Juan Chen‎ et al.
  • Scientific reports‎
  • 2016‎

Physical and chemical insult-induced bone marrow (BM) damage often leads to lethality resulting from the depletion of hematopoietic stem and progenitor cells (HSPCs) and/or a deteriorated BM stroma. Notch signaling plays an important role in hematopoiesis, but whether it is involved in BM damage remains unclear. In this study, we found that conditional disruption of RBP-J, the transcription factor of canonical Notch signaling, increased irradiation sensitivity in mice. Activation of Notch signaling with the endothelial cell (EC)-targeted soluble Dll1 Notch ligand mD1R promoted BM recovery after irradiation. mD1R treatment resulted in a significant increase in myeloid progenitors and monocytes in the BM, spleen and peripheral blood after irradiation. mD1R also enhanced hematopoiesis in mice treated with cyclophosphamide, a chemotherapeutic drug that induces BM suppression. Mechanistically, mD1R increased the proliferation and reduced the apoptosis of myeloid cells in the BM after irradiation. The β chain cytokine receptor Csf2rb2 was identified as a downstream molecule of Notch signaling in hematopoietic cells. mD1R improved hematopoietic recovery through up-regulation of the hematopoietic expression of Csf2rb2. Our findings reveal the role of Notch signaling in irradiation- and drug-induced BM suppression and establish a new potential therapy of BM- and myelo-suppression induced by radiotherapy and chemotherapy.


Exosomes derived from human umbilical vein endothelial cells promote neural stem cell expansion while maintain their stemness in culture.

  • Yi-Zhe Zhang‎ et al.
  • Biochemical and biophysical research communications‎
  • 2018‎

The neural stem cell (NSC) niche in subventricular zone (SVZ) of adult mammalian brain contains dense vascular plexus, where endothelial cells (ECs) regulate NSCs by releasing plenty of angiocrine factors. However, the role of ECs-derived exosomes, a novel type of mediators of intercellular communications, in the regulation of NSCs remains unclear. In the current study, primary NSCs isolated from embryonic mouse brains form more neurospheres when cultured in the presence of human umbilical vein endothelial cells (HUVECs). The supportive role of ECs in the coculture was significantly attenuated when GW4869, a blocker of exosome formation, was included, suggesting that HUVECs-derived exosomes played a significant role in supporting NSCs. In order to investigate the role of ECs-derived exosomes on NSCs, we collected exosomes from HUVECs. We found that HUVECs-derived exosomes could significantly promote the formation of neurospheres by primary murine NSCs. EdU incorporation and TUNEL assays indicated that the proliferation of NSCs increased while apoptosis decreased when cultured in the presence of HUVECs-derived exosomes. NSCs incubated with the HUVECs-derived exosomes maintained their potential of multi-lineage differentiation potentials. The expression of stemness-related genes was up-regulated. These data suggested that ECs-derived exosomes could play an importantly role in NSC niche, and they might be used as a reagent for ex vivo NSC amplification for medical application.


Temozolomide Treatment Induces HMGB1 to Promote the Formation of Glioma Stem Cells via the TLR2/NEAT1/Wnt Pathway in Glioblastoma.

  • Xiang-Yu Gao‎ et al.
  • Frontiers in cell and developmental biology‎
  • 2021‎

Formation of glioma stem cells (GSCs) is considered as one of the main reasons of temozolomide (TMZ) resistance in glioma patients. Recent studies have shown that tumor microenvironment-derived signals could promote GSCs formation. But the critical molecule and underlying mechanism for GSCs formation after TMZ treatment is not entirely identified. Our study showed that TMZ treatment promoted GSCs formation by glioma cells; TMZ treatment of biopsy-derived glioblastoma multiforme cells upregulated HMGB1; HMGB1 altered gene expression profile of glioma cells with respect to mRNA, lncRNA and miRNA. Furthermore, our results showed that TMZ-induced HMGB1 increased the formation of GSCs and when HMGB1 was downregulated, TMZ-mediated GSCs formation was attenuated. Finally, we showed that the effect of HMGB1 on glioma cells was mediated by TLR2, which activated Wnt/β-catenin signaling to promote GSCs. Mechanistically, we found that HMGB1 upregulated NEAT1, which was responsible for Wnt/β-catenin activation. In conclusion, TMZ treatment upregulates HMGB1, which promotes the formation of GSCs via the TLR2/NEAT1/Wnt pathway. Blocking HMGB1-mediated GSCs formation could serve as a potential therapeutic target for preventing TMZ resistance in GBM patients.


γ-secretase inhibitor disturbs the morphological development of differentiating neurons through affecting Notch/miR-342-5p.

  • Xin Kang‎ et al.
  • Neuroscience letters‎
  • 2022‎

During neurodevelopment, differentiation of neural stem/progenitor cells (NSPCs) into neurons are regulated by many factors including Notch signaling pathway. Herein, we report the effect of a Notch signaling blocker, i.e. γ -secretase inhibitor (GSI), on this differentiating process, especially on the morphological development. NSPCs were cultured and induced to differentiate with or without GSI. The neurite outgrowth was impeded by GSI application and the expression of a Notch signaling downstream effector miR-342-5p increased with the downregulated expression of Notch effectors Hes1 and Hes5. Upregulated expression of miR-342-5p in differentiating NSPCs could shorten the neurite length of progeny neurons, which was similar to the effect of GSI. To avoid the possible influence from astrocytes into neurons, we directly applied cultured neurons, on which GSI could shorten the processes and RBP-J knockdown could also reduce the neurite length. Similarly, transfection of miR-342-5p mimics or inhibitors into PC12 cells led to shorter or longer processes of cells compared with control ones. Furthermore, in differentiating NSPCs, GSI-induced shorter neurites could be partially rescued by miR-342-5p inhibitors, and STAT3 was one of the possible targets of miR-342-5p during this differentiating process as indicated by results of Western Blot test, luciferase reporter assay and GFP reporter assay. To further demonstrate the role of STAT3, it was introduced into GSI-treated neurons and the GSI-affected neurites could also be partially rescued. In conclusion, GSI could influence the morphological development of neurons and the possible mechanism involved Notch/miR-342-5p and STAT3. These results would be informative for future therapeutic research.


Transmembrane Protein Ttyh1 Maintains the Quiescence of Neural Stem Cells Through Ca2+/NFATc3 Signaling.

  • Yuan Cao‎ et al.
  • Frontiers in cell and developmental biology‎
  • 2021‎

The quiescence, activation, and subsequent neurogenesis of neural stem cells (NSCs) play essential roles in the physiological homeostasis and pathological repair of the central nervous system. Previous studies indicate that transmembrane protein Ttyh1 is required for the stemness of NSCs, whereas the exact functions in vivo and precise mechanisms are still waiting to be elucidated. By constructing Ttyh1-promoter driven reporter mice, we determined the specific expression of Ttyh1 in quiescent NSCs and niche astrocytes. Further evaluations on Ttyh1 knockout mice revealed that Ttyh1 ablation leads to activated neurogenesis and enhanced spatial learning and memory in adult mice (6-8 weeks). Correspondingly, Ttyh1 deficiency results in accelerated exhaustion of NSC pool and impaired neurogenesis in aged mice (12 months). By RNA-sequencing, bioinformatics and molecular biological analysis, we found that Ttyh1 is involved in the regulation of calcium signaling in NSCs, and transcription factor NFATc3 is a critical effector in quiescence versus cell cycle entry regulated by Ttyh1. Our research uncovered new endogenous mechanisms that regulate quiescence versus activation of NSCs, therefore provide novel targets for the intervention to activate quiescent NSCs to participate in injury repair during pathology and aging.


miR-342-5p Regulates Neural Stem Cell Proliferation and Differentiation Downstream to Notch Signaling in Mice.

  • Fang Gao‎ et al.
  • Stem cell reports‎
  • 2017‎

Notch signaling is critically involved in neural development, but the downstream effectors remain incompletely understood. In this study, we cultured neurospheres from Nestin-Cre-mediated conditional Rbp-j knockout (Rbp-j cKO) and control embryos and compared their miRNA expression profiles using microarray. Among differentially expressed miRNAs, miR-342-5p showed upregulated expression as Notch signaling was genetically or pharmaceutically interrupted. Consistently, the promoter of the miR-342-5p host gene, the Ena-vasodilator stimulated phosphoprotein-like (Evl), was negatively regulated by Notch signaling, probably through HES5. Transfection of miR-342-5p promoted the differentiation of neural stem cells (NSCs) into intermediate neural progenitors (INPs) in vitro and reduced the stemness of NSCs in vivo. Furthermore, miR-342-5p inhibited the differentiation of neural stem/intermediate progenitor cells into astrocytes, likely mediated by targeting GFAP directly. Our results indicated that miR-342-5p could function as a downstream effector of Notch signaling to regulate the differentiation of NSCs into INPs and astrocytes commitment.


Differential regulation of bone marrow-derived endothelial progenitor cells and endothelial outgrowth cells by the Notch signaling pathway.

  • Jing-Yuan Chen‎ et al.
  • PloS one‎
  • 2012‎

Endothelial progenitor cells (EPCs) are heterogeneous populations of cells that participate in vasculogenesis and promote tissue regeneration. However the different roles of EPC populations in vasculogenesis and tissue regeneration, as well as their regulation and mechanisms remain elusive. In the present study, we cultured bone marrow (BM)-derived early EPCs (EEPCs) and endothelial outgrowth cells (EOCs), and investigated their roles in liver regeneration and their regulation by the Notch signaling pathway. We found that Notch signaling exhibited different effects on the proliferation and migration of EEPCs and EOCs. Our results also showed that while EEPCs failed to form vessel-like structures in a three dimensional sprouting model in vitro, EOCs could sprout and form endothelial cords, and this was regulated by the Notch signaling. We further showed that, by using a conditional knockout model of RBP-J (the critical transcription factor mediating Notch signaling), Notch signaling differentially regulates EEPCs and EOCs. In a partial hepatectomy (PHx) model, EEPCs Notch-dependently benefitted liver regeneration with respect to liver function and hepatocyte proliferation and apoptosis. In contrast, EOCs appeared not directly involved in the recovery of liver function and the increase of hepatocytes. These data suggested that the RBP-J-mediated Notch signaling differentially regulated the two types of EPCs, which showed different roles in liver regeneration.


Neurons can upregulate Cav-1 to increase intake of endothelial cells-derived extracellular vesicles that attenuate apoptosis via miR-1290.

  • Kang-Yi Yue‎ et al.
  • Cell death & disease‎
  • 2019‎

Extracellular vesicles (EVs) including exosomes can serve as mediators of cell-cell communication under physiological and pathological conditions. However, cargo molecules carried by EVs to exert their functions, as well as mechanisms for their regulated release and intake, have been poorly understood. In this study, we examined the effects of endothelial cells-derived EVs on neurons suffering from oxygen-glucose deprivation (OGD), which mimics neuronal ischemia-reperfusion injury in human diseases. In a human umbilical endothelial cell (HUVEC)-neuron coculture assay, we found that HUVECs reduced apoptosis of neurons under OGD, and this effect was compromised by GW4869, a blocker of exosome release. Purified EVs could be internalized by neurons and alleviate neuronal apoptosis under OGD. A miRNA, miR-1290, was highly enriched in HUVECs-derived EVs and was responsible for EV-mediated neuronal protection under OGD. Interestingly, we found that OGD enhanced intake of EVs by neurons cultured in vitro. We examined the expression of several potential receptors for EV intake and found that caveolin-1 (Cav-1) was upregulated in OGD-treated neurons and mice suffering from middle cerebral artery occlusion (MCAO). Knock-down of Cav-1 in neurons reduced EV intake, and canceled EV-mediated neuronal protection under OGD. HUVEC-derived EVs alleviated MCAO-induced neuronal apoptosis in vivo. These findings suggested that ischemia likely upregulates Cav-1 expression in neurons to increase EV intake, which protects neurons by attenuating apoptosis via miR-1290.


Adenovirus infection promotes the formation of glioma stem cells from glioblastoma cells through the TLR9/NEAT1/STAT3 pathway.

  • Jian Zang‎ et al.
  • Cell communication and signaling : CCS‎
  • 2020‎

Glioma stem cells (GSCs) are glioma cells with stemness and are responsible for a variety of malignant behaviors of glioma. Evidence has shown that signals from tumor microenvironment (TME) enhance stemness of glioma cells. However, identification of the signaling molecules and underlying mechanisms has not been completely elucidated.


Endothelium-targeted Delta-like 1 promotes hematopoietic stem cell expansion ex vivo and engraftment in hematopoietic tissues in vivo.

  • Deng-Mei Tian‎ et al.
  • Stem cell research‎
  • 2013‎

Notch ligands enhance ex vivo expansion of hematopoietic stem cells (HSCs). But to use Notch ligands in HSC therapies of human diseases, efforts are required to improve ex vivo expansion efficiency and in vivo transplant engraftment.


MicroRNA-582-5p Contributes to the Maintenance of Neural Stem Cells Through Inhibiting Secretory Protein FAM19A1.

  • Yu-Fei Zhang‎ et al.
  • Frontiers in cellular neuroscience‎
  • 2022‎

Epigenetic regulations on the maintenance of neural stem cells (NSCs) are complicated and far from been fully understood. Our previous findings have shown that after blocking Notch signaling in NSCs in vivo, the stemness of NSCs decreases, accompanied by the downregulated expression of miR-582-5p. In the current study, we further investigated the function and mechanism of miR-582-5p in the maintenance of NSCs in vitro and in vivo. After transfecting a mimic of miR-582-5p, the formation of neurospheres and proliferation of NSCs and intermediate progenitor cells (NS/PCs) were enhanced, and the expression of stemness markers such as Sox2, Nestin, and Pax6 also increased. The results were reversed after transfection of an inhibitor of miR-582-5p. We further generated miR-582 knock-out (KO) mice to investigate its function in vivo, and we found that the number of NSCs in the subventricular zone (SVZ) region decreased and the number of neuroblasts increased in miR-582 deficient mice, indicating reduced stemness and enhanced neurogenesis of NSCs. Moreover, RNA-sequencing and molecular biological analysis revealed that miR-582-5p regulates the stemness and proliferation of NSCs by inhibiting secretory protein FAM19A1. In summary, our research uncovered a new epigenetic mechanism that regulates the maintenance of NSCs, therefore providing novel targets to amplify NSCs in vitro and to promote neurogenesis in vivo during brain pathology and aging.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: