Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 20 papers out of 2,919 papers

Overexpression of the transcription factor Foxo4 is associated with rapid glucose clearance.

  • Biao Wang‎ et al.
  • Molecular and cellular endocrinology‎
  • 2009‎

Leptin treatment ameliorates lipoatrophic diabetes in animal models and humans. Transgenic mice overexpressing leptin (LepTg) are lipoatrophic but not diabetic and thus represent a model for elucidating mechanisms of leptin-mediated glucose homeostasis. In this communication, we show that LepTg mice overexpress the forkhead transcription factor foxo4 in their remnant adipose tissue. To further characterize the role of foxo4 in adipose tissue, we generated transgenic mice overexpressing a constitutive active form of foxo4 (A3foxo4) under the control of the aP2 promoter/enhancer. aP2-A3foxo4 mice are not lipoatrophic but are able to clear glucose rapidly similar to LepTg mice. In addition, both LepTg and A3foxo4 mice show in their adipocytes increased AMP-activated protein kinase (AMPK) phosphorylation, suggesting a link between AMPK, glucose clearance, foxo4 and the leptin axis. These studies shed new light on mechanisms by which leptin treatment improves glucose disposal.


Intranasal immunization with influenza VLPs incorporating membrane-anchored flagellin induces strong heterosubtypic protection.

  • Bao-Zhong Wang‎ et al.
  • PloS one‎
  • 2010‎

We demonstrated previously that the incorporation of a membrane-anchored form of flagellin into influenza virus-like particles (VLPs) improved the immunogenicity of VLPs significantly, inducing partially protective heterosubtypic immunity by intramuscular immunization. Because the efficacy of mucosal vaccination is highly dependent on an adjuvant, and is particularly effective for preventing mucosal infections such as influenza, we determined whether the membrane-anchored flagellin is an efficient adjuvant for VLP vaccines by a mucosal immunization route. We compared the adjuvant effect of membrane-anchored and soluble flagellins for immunization with influenza A/PR8 (H1N1) VLPs by the intranasal route in a mouse model. The results demonstrate that membrane-anchored flagellin is an effective adjuvant for intranasal (IN) immunization, inducing enhanced systemic and mucosal antibody responses. High cellular responses were also observed as shown by cytokine production in splenocyte cultures when stimulated with viral antigens. All mice immunized with flagellin-containing VLPs survived challenge with a high lethal dose of homologous virus as well as a high dose heterosubtypic virus challenge (40 LD(50) of A/Philippines/82, H3N2). In contrast, no protection was observed with a standard HA/M1 VLP group upon heterosubtypic challenge. Soluble flagellin exhibited a moderate adjuvant effect when co-administered with VLPs by the mucosal route, as indicated by enhanced systemic and mucosal responses and partial heterosubtypic protection. The membrane-anchored form of flagellin incorporated together with antigen into influenza VLPs is effective as an adjuvant by the mucosal route and unlike standard VLPs, immunization with such chimeric VLPs elicits protective immunity to challenge with a distantly related influenza A virus.


Role of nuclear receptor SHP in metabolism and cancer.

  • Yuxia Zhang‎ et al.
  • Biochimica et biophysica acta‎
  • 2011‎

Small heterodimer partner (SHP, NR0B2) is a unique member of the nuclear receptor (NR) superfamily that contains the dimerization and ligand-binding domain found in other family members, but lacks the conserved DNA-binding domain. The ability of SHP to bind directly to multiple NRs is crucial for its physiological function as a transcriptional inhibitor of gene expression. A wide variety of interacting partners for SHP have been identified, indicating the potential for SHP to regulate an array of genes in different biological pathways. In this review, we summarize studies concerning the structure and target genes of SHP and discuss recent progress in understanding the function of SHP in bile acid, cholesterol, triglyceride, glucose, and drug metabolism. In addition, we review the regulatory role of SHP in microRNA (miRNA) regulation, liver fibrosis and cancer progression. The fact that SHP controls a complex set of genes in multiple metabolic pathways suggests the intriguing possibility of developing new therapeutics for metabolic diseases, including fatty liver, dyslipidemia and obesity, by regulating SHP with small molecules. To achieve this goal, more progress regarding SHP ligands and protein structure will be required. Besides its metabolic regulatory function, studies by us and other groups provide strong evidence that SHP plays a critical role in the development of cancer, particularly liver and breast cancer. An increased understanding of the fundamental mechanisms by which SHP regulates the development of cancers will be critical in applying knowledge of SHP in diagnostic, therapeutic or preventive strategies for specific cancers. This article is part of a Special Issue entitled: Translating nuclear receptors from health to disease.


Monoclonal antibodies against nucleophosmin mutants: potentials for the detection of acute myeloid leukemia.

  • Shi Tan‎ et al.
  • International journal of medical sciences‎
  • 2011‎

Nucleophosmin (NPM1) gene mutations resulting in cytoplasmic delocalization of Nucleophosmin (NPMc+) are the most common genetic alteration in acute myeloid leukemia (AML). Here, we attempted to prepare monoclonal antibodies (mAbs) against NPM1 mutation A (NPM-mA) and investigated the mAbs' clinical utility in immunohistochemical detection of NPMc+AML. The pET-32a-NPM-mA vector with the whole open reading frame of the NPM-mA gene was constructed. E.coli BL21 transformed with the vector were induced to express the NPM-mA recombinant protein. BALB/c mice were immunized with the recombinant NPM-mA. Positive clones were selected by indirect ELISA and the mAbs were obtained. Immunohistochemistry was performed to detect the NPMc+ in bone marrow smears from 10 AML patients with NPM-mA. The results showed that the pET-32a-NPM-mA vector was successfully constructed and the NPM-mA recombinant protein was used to immunize the mice. Two positive clones (2G3 and 3F9) were selected. The mAbs against NPM-mA were raised, but did cross-react with wild type NPM1. The mAbs can be used to detect the cytoplasmic dislocation of NPM1 in all AMLs carrying NPM-mA. Our results show that anti-NPM-mA mAbs were produced. Though they would cross-react with wild type NPM1, the mAbs may still have potential in the detection of NPMc+AMLs.


Efficient design and assembly of custom TALEN and other TAL effector-based constructs for DNA targeting.

  • Tomas Cermak‎ et al.
  • Nucleic acids research‎
  • 2011‎

TALENs are important new tools for genome engineering. Fusions of transcription activator-like (TAL) effectors of plant pathogenic Xanthomonas spp. to the FokI nuclease, TALENs bind and cleave DNA in pairs. Binding specificity is determined by customizable arrays of polymorphic amino acid repeats in the TAL effectors. We present a method and reagents for efficiently assembling TALEN constructs with custom repeat arrays. We also describe design guidelines based on naturally occurring TAL effectors and their binding sites. Using software that applies these guidelines, in nine genes from plants, animals and protists, we found candidate cleavage sites on average every 35 bp. Each of 15 sites selected from this set was cleaved in a yeast-based assay with TALEN pairs constructed with our reagents. We used two of the TALEN pairs to mutate HPRT1 in human cells and ADH1 in Arabidopsis thaliana protoplasts. Our reagents include a plasmid construct for making custom TAL effectors and one for TAL effector fusions to additional proteins of interest. Using the former, we constructed de novo a functional analog of AvrHah1 of Xanthomonas gardneri. The complete plasmid set is available through the non-profit repository AddGene and a web-based version of our software is freely accessible online.


A novel mutation in γD-crystallin associated with autosomal dominant congenital cataract in a Chinese family.

  • Li Wang‎ et al.
  • Molecular vision‎
  • 2011‎

To identify the pathogenic gene mutation in a Chinese family with autosomal dominant congenital nuclear cataract.


Genome-wide interaction-based association analysis identified multiple new susceptibility Loci for common diseases.

  • Yang Liu‎ et al.
  • PLoS genetics‎
  • 2011‎

Genome-wide interaction-based association (GWIBA) analysis has the potential to identify novel susceptibility loci. These interaction effects could be missed with the prevailing approaches in genome-wide association studies (GWAS). However, no convincing loci have been discovered exclusively from GWIBA methods, and the intensive computation involved is a major barrier for application. Here, we developed a fast, multi-thread/parallel program named "pair-wise interaction-based association mapping" (PIAM) for exhaustive two-locus searches. With this program, we performed a complete GWIBA analysis on seven diseases with stringent control for false positives, and we validated the results for three of these diseases. We identified one pair-wise interaction between a previously identified locus, C1orf106, and one new locus, TEC, that was specific for Crohn's disease, with a Bonferroni corrected P < 0.05 (P = 0.039). This interaction was replicated with a pair of proxy linked loci (P = 0.013) on an independent dataset. Five other interactions had corrected P < 0.5. We identified the allelic effect of a locus close to SLC7A13 for coronary artery disease. This was replicated with a linked locus on an independent dataset (P = 1.09 × 10⁻⁷). Through a local validation analysis that evaluated association signals, rather than locus-based associations, we found that several other regions showed association/interaction signals with nominal P < 0.05. In conclusion, this study demonstrated that the GWIBA approach was successful for identifying novel loci, and the results provide new insights into the genetic architecture of common diseases. In addition, our PIAM program was capable of handling very large GWAS datasets that are likely to be produced in the future.


Mapping and analysis of chromatin state dynamics in nine human cell types.

  • Jason Ernst‎ et al.
  • Nature‎
  • 2011‎

Chromatin profiling has emerged as a powerful means of genome annotation and detection of regulatory activity. The approach is especially well suited to the characterization of non-coding portions of the genome, which critically contribute to cellular phenotypes yet remain largely uncharted. Here we map nine chromatin marks across nine cell types to systematically characterize regulatory elements, their cell-type specificities and their functional interactions. Focusing on cell-type-specific patterns of promoters and enhancers, we define multicell activity profiles for chromatin state, gene expression, regulatory motif enrichment and regulator expression. We use correlations between these profiles to link enhancers to putative target genes, and predict the cell-type-specific activators and repressors that modulate them. The resulting annotations and regulatory predictions have implications for the interpretation of genome-wide association studies. Top-scoring disease single nucleotide polymorphisms are frequently positioned within enhancer elements specifically active in relevant cell types, and in some cases affect a motif instance for a predicted regulator, thus suggesting a mechanism for the association. Our study presents a general framework for deciphering cis-regulatory connections and their roles in disease.


RASSF1A suppresses melanoma development by modulating apoptosis and cell-cycle progression.

  • Mei Yi‎ et al.
  • Journal of cellular physiology‎
  • 2011‎

The tumor suppressor candidate gene Ras association domain family 1, isoform A (RASSF1A) encodes a microtubule-associated protein that is implicated in the regulation of cell proliferation, migration, and apoptosis. Several studies indicate that down-regulation of RASSF1A resulting from promoter hypermethylation is a frequent epigenetic abnormality in malignant melanoma. In this study, we report that compared with melanocytes in normal skins or benign skin lesions, RASSF1A is down-regulated in melanoma tissues as well as cell lines, and its expression negatively correlates with lymph node metastasis. Following ectopic expression in RASSF1A-deficient melanoma A375 cell line, RASSF1A reduces cell viability, suppresses cell-cycle progression but enhances apoptotic cell death. In vivo, RASSF1A expression inhibits the tumorigenic potential of A375 cells in nude mice, which also correlates with decreased cell proliferation and increased apoptosis. On the molecular level, ectopic RASSF1A expression leads to differential expression of 209 genes, including 26 down-regulated and 183 up-regulated ones. Among different signaling pathways, activation of the apoptosis signal-regulating kinase 1 (ASK1)/p38 MAP kinase signaling is essential for RASSF1A-induced mitochondrial apoptosis, and the inhibition of the Akt/p70S6 kinase/eIF4E signaling is also important for RASSF1A-mediated apoptosis and cell-cycle arrest. This is the first study exploring the biological functions and the underlying mechanisms of RASSF1A during melanoma development. It also identifies potential targets for further diagnosis and clinical therapy.


ShRNA-targeted centromere protein A inhibits hepatocellular carcinoma growth.

  • Yongmei Li‎ et al.
  • PloS one‎
  • 2011‎

Centromere protein A (CENP-A) plays important roles in cell-cycle regulation and genetic stability. Herein, we aimed to investigate its expression pattern, clinical significance, and biological function in hepatocellular carcinoma (HCC).


In a subgroup of high-risk Asians, telmisartan was non-inferior to ramipril and better tolerated in the prevention of cardiovascular events.

  • Antonio L Dans‎ et al.
  • PloS one‎
  • 2010‎

Results of the recently published ONTARGET study (The Ongoing Telmisartan Alone and in Combination with Ramipril Global Endpoint Trial) showed that telmisartan (80 mg/day) was non-inferior to ramipril (10 mg/day) in reducing cardiovascular events. Clinicians in Asia doubt tolerability of these doses for their patients. We therefore analyzed data from this study and a parallel study TRANSCEND (Telmisartan Randomized Assessment Study in ACE Intolerant Subjects with Cardiovascular Disease). Our objectives were to compare Asians and non-Asians with respect to the following: 1) Effectiveness of telmisartan vs. ramipril in reducing cardiovascular events;2) Proportions who reached the full dose of telmisartan, ramipril or placebo; and3) Proportions of overall discontinuations, and discontinuations due to adverse effects.


Prognostic significance of serum immunoglobulin paraprotein in patients with chronic lymphocytic leukemia.

  • Wei Xu‎ et al.
  • Leukemia research‎
  • 2011‎

The aim of this study was to explore the clinical and other associated laboratory features of chronic lymphocytic leukemia (CLL) patients with immunoglobulin (Ig) paraproteinemia. Serum protein electrophoresis (SPE) and immunofixation electrophoresis (IFE) were performed to measure serum Ig paraprotein. The correlations between serum Ig paraprotein and other prognostic factors were analyzed. Univariate and multivariate Cox regression analyses were used to assess associations between survival time and potential risk factors. In 133 Chinese CLL patients, 27 (20.3%) patients occurred Ig paraproteinemia at diagnosis. According to the correlation analysis, advanced Binet stage (r=0.314, P<0.001), direct antiglobulin test (DAT)-positive (r=0.366, P<0.001), high level of serum β2-microglobulin (β2-MG) (r=0.296, P=0.001) and thymidine kinase (TK) 1 (r=0.227, P=0.037), unmutated immunoglobulin heavy chain variable gene (IGHV) status (r=0.284, P=0.002), ZAP-70-positive (r=0.305, P=0.001), CD38-positive (r=0.284, P=0.002), and cytogenetic abnormalities of del(17p13) or del(11q22.3) (r=0.208, P=0.032) emerged as factors significantly related to the occurrence of Ig paraproteinemia. Survival analysis showed that the patients with Ig paraproteinemia had significantly shorter survival times than the patients without serum Ig paraprotein (P=0.013). Binet stage (P=0.028), high levels of lactate dehydrogenase (LDH) (P=0.004), IgG paraproteinemia (P=0.048), IgM paraproteinemia (P=0.001), ZAP-70-positive (P=0.003), DAT-positive (P=0.013), unmutated IGHV status (P=0.009), and del(17p13) (P=0.001) were the adverse factors in determining overall survival (OS). Del(17p13) (P=0.006), ZAP-70 (P=0.030), and IgM paraproteinemia (P=0.040) were the variables strongly associated with OS by multivariate Cox regression analysis. It was showed that serum Ig paraprotein might be applied for the assessment of prognosis in patients with CLL.


Nuclear receptor SHP activates miR-206 expression via a cascade dual inhibitory mechanism.

  • Guisheng Song‎ et al.
  • PloS one‎
  • 2009‎

MicroRNAs play a critical role in many essential cellular functions in the mammalian species. However, limited information is available regarding the regulation of miRNAs gene transcription. Microarray profiling and real-time PCR analysis revealed a marked down-regulation of miR-206 in nuclear receptor SHP(-/-) mice. To understand the regulatory function of SHP with regard to miR-206 gene expression, we determined the putative transcriptional initiation site of miR-206 and also its full length primary transcript using a database mining approach and RACE. We identified the transcription factor AP1 binding sites on the miR-206 promoter and further showed that AP1 (c-Jun and c-Fos) induced miR-206 promoter transactivity and expression which was repressed by YY1. ChIP analysis confirmed the physical association of AP1 (c-Jun) and YY1 with the endogenous miR-206 promoter. In addition, we also identified nuclear receptor ERRgamma (NR3B3) binding site on the YY1 promoter and showed that YY1 promoter was transactivated by ERRgamma, which was inhibited by SHP (NROB2). ChIP analysis confirmed the ERRgamma binding to the YY1 promoter. Forced expression of SHP and AP1 induced miR-206 expression while overexpression of ERRgamma and YY1 reduced its expression. The effects of AP1, ERRgamma, and YY1 on miR-206 expression were reversed by siRNA knockdown of each gene, respectively. Thus, we propose a novel cascade "dual inhibitory" mechanism governing miR-206 gene transcription by SHP: SHP inhibition of ERRgamma led to decreased YY1 expression and the de-repression of YY1 on AP1 activity, ultimately leading to the activation of miR-206. This is the first report to elucidate a cascade regulatory mechanism governing miRNAs gene transcription.


Prioritizing functional modules mediating genetic perturbations and their phenotypic effects: a global strategy.

  • Li Wang‎ et al.
  • Genome biology‎
  • 2008‎

We have developed a global strategy based on the Bayesian network framework to prioritize the functional modules mediating genetic perturbations and their phenotypic effects among a set of overlapping candidate modules. We take lethality in Saccharomyces cerevisiae and human cancer as two examples to show the effectiveness of this approach. We discovered that lethality is more conserved at the module level than at the gene level and we identified several potentially 'new' cancer-related biological processes.


Dinucleotides docking to scorpion polypeptide toxins: a molecular modeling method for protein functional site recognition.

  • Jun Zhu‎ et al.
  • Biochemical and biophysical research communications‎
  • 2009‎

To understand the principles underlying protein folding, many molecular modeling methods are being developed for predicting functional positions. In this work, fully flexible dinucleotides d(pApA), d(pApC), d(pApG), d(pApT), d(pCpA), d(pCpC), d(pCpG), d(pCpT), d(pGpA), d(pGpC), d(pGpG), d(pGpT), d(pTpA), d(pTpC), d(pTpG), and d(pTpT) were first docked onto the surface of scorpion polypeptide toxins (LqhIT2, PDB ID:2I61) and homology modeled ANEPIII. Automated docking was able to identify sites on scorpion polypeptide toxins where favorable nucleotide interactions can occur, and those sites were in agreement with the mutation data of this protein published recently [I. Karbat, R. Kahn, L. Cohen, N. Ilan, N. Gilles, G. Corzo, O. Froy, M. Gur, G. Albrecht, S.H. Heinemann, D. Gordon, M. Gurevitz, The unique pharmacology of the scorpion alpha-like toxin Lqh3 is associated with its flexible C-tail, Febs J 274 (2007) 1918-1931]. Simulation results suggested that dinucleotides docking is a suitable molecular modeling method that could be developed for protein functional site recognition.


Arabidopsis CSLD1 and CSLD4 are required for cellulose deposition and normal growth of pollen tubes.

  • Wei Wang‎ et al.
  • Journal of experimental botany‎
  • 2011‎

The cell wall is important for pollen tube growth, but little is known about the molecular mechanism that controls cell wall deposition in pollen tubes. Here, the functional characterization of the pollen-expressed Arabidopsis cellulose synthase-like D genes CSLD1 and CSLD4 that are required for pollen tube growth is reported. Both CSLD1 and CSLD4 are highly expressed in mature pollen grains and pollen tubes. The CSLD1 and CSLD4 proteins are located in the Golgi apparatus and transported to the plasma membrane of the tip region of growing pollen tubes, where cellulose is actively synthesized. Mutations in CSLD1 and CSLD4 caused a significant reduction in cellulose deposition in the pollen tube wall and a remarkable disorganization of the pollen tube wall layers, which disrupted the genetic transmission of the male gametophyte. In csld1 and csld4 single mutants and in the csld1 csld4 double mutant, all the mutant pollen tubes exhibited similar phenotypes: the pollen tubes grew extremely abnormally both in vitro and in vivo, which indicates that CSLD1 and CSLD4 are not functionally redundant. Taken together, these results suggest that CSLD1 and CSLD4 play important roles in pollen tube growth, probably through participation in cellulose synthesis of the pollen tube wall.


Suberoylanilide hydroxamic acid treatment reveals crosstalks among proteome, ubiquitylome and acetylome in non-small cell lung cancer A549 cell line.

  • Quan Wu‎ et al.
  • Scientific reports‎
  • 2015‎

Suberoylanilide hydroxamic acid (SAHA) is a well-known histone deacetylase (HDAC) inhibitor and has been used as practical therapy for breast cancer and non-small cell lung cancer (NSCLC). It is previously demonstrated that SAHA treatment could extensively change the profile of acetylome and proteome in cancer cells. However, little is known about the impact of SAHA on other protein modifications and the crosstalks among different modifications and proteome, hindering the deep understanding of SAHA-mediated cancer therapy. In this work, by using SILAC technique, antibody-based affinity enrichment and high-resolution LC-MS/MS analysis, we investigated quantitative proteome, acetylome and ubiquitylome as well as crosstalks among the three datasets in A549 cells toward SAHA treatment. In total, 2968 proteins, 1099 acetylation sites and 1012 ubiquitination sites were quantified in response to SAHA treatment, respectively. With the aid of intensive bioinformatics, we revealed that the proteome and ubiquitylome were negatively related upon SAHA treatment. Moreover, the impact of SAHA on acetylome resulted in 258 up-regulated and 99 down-regulated acetylation sites at the threshold of 1.5 folds. Finally, we identified 55 common sites with both acetylation and ubiquitination, among which ubiquitination level in 43 sites (78.2%) was positive related to acetylation level.


miR-501-3p mediates the activity-dependent regulation of the expression of AMPA receptor subunit GluA1.

  • Zhonghua Hu‎ et al.
  • The Journal of cell biology‎
  • 2015‎

The number of α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptors (AMPARs) in synapses determines synaptic strength. AMPAR expression can be regulated locally in dendrites by synaptic activity. The mechanisms of activity-dependent local regulation of AMPAR expression, however, remain unclear. Here, we tested whether microRNAs (miRNAs) are involved in N-methyl-D-aspartate (NMDA) receptor (NMDAR)-dependent AMPAR expression. We used the 3' untranslated region of Gria1, which encodes the AMPA receptor subunit GluA1, to pull down miRNAs binding to it and analyzed these miRNAs using next-generation deep sequencing. Among the identified miRNAs, miR-501-3p is also a computationally predicted Gria1-targeting miRNA. We confirmed that miR-501-3p targets Gria1 and regulates its expression under physiological conditions. The expression of miR-501-3p and GluA1, moreover, is inversely correlated during postnatal brain development. miR-501-3p expression is up-regulated locally in dendrites through the NMDAR subunit GluN2A, and this regulation is required for NMDA-induced suppression of GluA1 expression and long-lasting remodeling of dendritic spines. These findings elucidate a miRNA-mediated mechanism for activity-dependent, local regulation of AMPAR expression in dendrites.


Irreversible dual inhibitory mode: the novel Btk inhibitor PLS-123 demonstrates promising anti-tumor activity in human B-cell lymphoma.

  • Ning Ding‎ et al.
  • Oncotarget‎
  • 2015‎

The B-cell receptor (BCR) signaling pathway has gained significant attention as a therapeutic target in B-cell malignancies. Recently, several drugs that target the BCR signaling pathway, especially the Btk inhibitor ibrutinib, have demonstrated notable therapeutic effects in relapsed/refractory patients, which indicates that pharmacological inhibition of BCR pathway holds promise in B-cell lymphoma treatment. Here we present a novel covalent irreversible Btk inhibitor PLS-123 with more potent anti-proliferative activity compared with ibrutinib in multiple cellular and in vivo models through effective apoptosis induction and dual-action inhibitory mode of Btk activation. The phosphorylation of BCR downstream activating AKT/mTOR and MAPK signal pathways was also more significantly reduced after treatment with PLS-123 than ibrutinib. Gene expression profile analysis further suggested that the different selectivity profile of PLS-123 led to significant downregulation of oncogenic gene PTPN11 expression, which might also offer new opportunities beyond what ibrutinib has achieved. In addition, PLS-123 dose-dependently attenuated BCR- and chemokine-mediated lymphoma cell adhesion and migration. Taken together, Btk inhibitor PLS-123 suggested a new direction to pharmacologically modulate Btk function and develop novel therapeutic drug for B-cell lymphoma treatment.


A peptide N-terminal protection strategy for comprehensive glycoproteome analysis using hydrazide chemistry based method.

  • Junfeng Huang‎ et al.
  • Scientific reports‎
  • 2015‎

Enrichment of glycopeptides by hydrazide chemistry (HC) is a popular method for glycoproteomics analysis. However, possible side reactions of peptide backbones during the glycan oxidation in this method have not been comprehensively studied. Here, we developed a proteomics approach to locate such side reactions and found several types of the side reactions that could seriously compromise the performance of glycoproteomics analysis. Particularly, the HC method failed to identify N-terminal Ser/Thr glycopeptides because the oxidation of vicinal amino alcohol on these peptides generates aldehyde groups and after they are covalently coupled to HC beads, these peptides cannot be released by PNGase F for identification. To overcome this drawback, we apply a peptide N-terminal protection strategy in which primary amine groups on peptides are chemically blocked via dimethyl labeling, thus the vicinal amino alcohols on peptide N-termini are eliminated. Our results showed that this strategy successfully prevented the oxidation of peptide N-termini and significantly improved the coverage of glycoproteome.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: