Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 20 papers out of 344 papers

Genome sequence and analysis of Buzura suppressaria nucleopolyhedrovirus: a group II Alphabaculovirus.

  • Zheng Zhu‎ et al.
  • PloS one‎
  • 2014‎

The genome of Buzura suppressaria nucleopolyhedrovirus (BusuNPV) was sequenced by 454 pyrosequencing technology. The size of the genome is 120,420 bp with 36.8% G+C content. It contains 127 hypothetical open reading frames (ORFs) covering 90.7% of the genome and includes the 37 conserved baculovirus core genes, 84 genes found in other baculoviruses, and 6 unique ORFs. No typical baculoviral homologous repeats (hrs) were present but the genome contained a region of repeated sequences. Gene Parity Plots revealed a 28.8 kb region conserved among the alpha- and beta-baculoviruses. Overall comparisons of BusuNPV to other baculoviruses point to a distinct species in group II Alphabaculovirus.


Porcine transcriptome analysis based on 97 non-normalized cDNA libraries and assembly of 1,021,891 expressed sequence tags.

  • Jan Gorodkin‎ et al.
  • Genome biology‎
  • 2007‎

Knowledge of the structure of gene expression is essential for mammalian transcriptomics research. We analyzed a collection of more than one million porcine expressed sequence tags (ESTs), of which two-thirds were generated in the Sino-Danish Pig Genome Project and one-third are from public databases. The Sino-Danish ESTs were generated from one normalized and 97 non-normalized cDNA libraries representing 35 different tissues and three developmental stages.


Draft genome sequence of the Tibetan antelope.

  • Ri-Li Ge‎ et al.
  • Nature communications‎
  • 2013‎

The Tibetan antelope (Pantholops hodgsonii) is endemic to the extremely inhospitable high-altitude environment of the Qinghai-Tibetan Plateau, a region that has a low partial pressure of oxygen and high ultraviolet radiation. Here we generate a draft genome of this artiodactyl and use it to detect the potential genetic bases of highland adaptation. Compared with other plain-dwelling mammals, the genome of the Tibetan antelope shows signals of adaptive evolution and gene-family expansion in genes associated with energy metabolism and oxygen transmission. Both the highland American pika, and the Tibetan antelope have signals of positive selection for genes involved in DNA repair and the production of ATPase. Genes associated with hypoxia seem to have experienced convergent evolution. Thus, our study suggests that common genetic mechanisms might have been utilized to enable high-altitude adaptation.


The genome sequence of the orchid Phalaenopsis equestris.

  • Jing Cai‎ et al.
  • Nature genetics‎
  • 2015‎

Orchidaceae, renowned for its spectacular flowers and other reproductive and ecological adaptations, is one of the most diverse plant families. Here we present the genome sequence of the tropical epiphytic orchid Phalaenopsis equestris, a frequently used parent species for orchid breeding. P. equestris is the first plant with crassulacean acid metabolism (CAM) for which the genome has been sequenced. Our assembled genome contains 29,431 predicted protein-coding genes. We find that contigs likely to be underassembled, owing to heterozygosity, are enriched for genes that might be involved in self-incompatibility pathways. We find evidence for an orchid-specific paleopolyploidy event that preceded the radiation of most orchid clades, and our results suggest that gene duplication might have contributed to the evolution of CAM photosynthesis in P. equestris. Finally, we find expanded and diversified families of MADS-box C/D-class, B-class AP3 and AGL6-class genes, which might contribute to the highly specialized morphology of orchid flowers.


Draft genome sequence of the mulberry tree Morus notabilis.

  • Ningjia He‎ et al.
  • Nature communications‎
  • 2013‎

Human utilization of the mulberry-silkworm interaction started at least 5,000 years ago and greatly influenced world history through the Silk Road. Complementing the silkworm genome sequence, here we describe the genome of a mulberry species Morus notabilis. In the 330-Mb genome assembly, we identify 128 Mb of repetitive sequences and 29,338 genes, 60.8% of which are supported by transcriptome sequencing. Mulberry gene sequences appear to evolve ~3 times faster than other Rosales, perhaps facilitating the species' spread worldwide. The mulberry tree is among a few eudicots but several Rosales that have not preserved genome duplications in more than 100 million years; however, a neopolyploid series found in the mulberry tree and several others suggest that new duplications may confer benefits. Five predicted mulberry miRNAs are found in the haemolymph and silk glands of the silkworm, suggesting interactions at molecular levels in the plant-herbivore relationship. The identification and analyses of mulberry genes involved in diversifying selection, resistance and protease inhibitor expressed in the laticifers will accelerate the improvement of mulberry plants.


A mitochondrial genome sequence of the Tibetan antelope (Pantholops hodgsonii).

  • Shu Qing Xu‎ et al.
  • Genomics, proteomics & bioinformatics‎
  • 2005‎

To investigate genetic mechanisms of high altitude adaptations of native mammals on the Tibetan Plateau, we compared mitochondrial sequences of the endangered Pantholops hodgsonii with its lowland distant relatives Ovis aries and Capra hircus, as well as other mammals. The complete mitochondrial genome of P. hodgsonii (16,498 bp) revealed a similar gene order as of other mammals. Because of tandem duplications, the control region of P. hodgsonii mitochondrial genome is shorter than those of O. aries and C. hircus, but longer than those of Bos species. Phylogenetic analysis based on alignments of the entire cytochrome b genes suggested that P. hodgsonii is more closely related to O. aries and C. hircus, rather than to species of the Antilopinae subfamily. The estimated divergence time between P. hodgsonii and O. aries is about 2.25 million years ago. Further analysis on natural selection indicated that the COXI (cytochrome c oxidase subunit I) gene was under positive selection in P. hodgsonii and Bos grunniens. Considering the same climates and environments shared by these two mammalian species, we proposed that the mitochondrial COXI gene is probably relevant for these native mammals to adapt the high altitude environment unique to the Tibetan Plateau.


Genome sequence of ground tit Pseudopodoces humilis and its adaptation to high altitude.

  • Qingle Cai‎ et al.
  • Genome biology‎
  • 2013‎

The mechanism of high-altitude adaptation has been studied in certain mammals. However, in avian species like the ground tit Pseudopodoces humilis, the adaptation mechanism remains unclear. The phylogeny of the ground tit is also controversial.


Pearl millet genome sequence provides a resource to improve agronomic traits in arid environments.

  • Rajeev K Varshney‎ et al.
  • Nature biotechnology‎
  • 2017‎

Pearl millet [Cenchrus americanus (L.) Morrone] is a staple food for more than 90 million farmers in arid and semi-arid regions of sub-Saharan Africa, India and South Asia. We report the ∼1.79 Gb draft whole genome sequence of reference genotype Tift 23D2B1-P1-P5, which contains an estimated 38,579 genes. We highlight the substantial enrichment for wax biosynthesis genes, which may contribute to heat and drought tolerance in this crop. We resequenced and analyzed 994 pearl millet lines, enabling insights into population structure, genetic diversity and domestication. We use these resequencing data to establish marker trait associations for genomic selection, to define heterotic pools, and to predict hybrid performance. We believe that these resources should empower researchers and breeders to improve this important staple crop.


Genome Sequence of the Fish Pathogen Yersinia ruckeri SC09 Provides Insights into Niche Adaptation and Pathogenic Mechanism.

  • Tao Liu‎ et al.
  • International journal of molecular sciences‎
  • 2016‎

Yersinia ruckeri is the etiologic agent of enteric red mouth disease (ERM), a severe fish disease prevailing in worldwide aquaculture industries. Here we report for the first time the complete genome of Y. ruckeri (Yersinia ruckeri) SC09, a highly virulent strain isolated from Ictalurus punctatus with severe septicemia. SC09 possesses a single chromosome of 3,923,491 base pairs, which contains 3651 predicted protein coding sequences (CDS), 19 rRNA genes, and 79 tRNA genes. Among the CDS, we have identified a Ysa locus containing genes encoding all the components of a type III secretion system (T3SS). Comparative analysis suggest that SC09-Ysa share extensive similarity in sequence, gene content, and gene arrangement with Salmonella enterica pathogenicity island 1 (SPI1) and chromosome-encoded T3SS from Yersinia enterocolitica biotype 1B. Furthermore, phylogenetic analysis shown that SC09-Ysa and SPI1-T3SS belong on the same branch of the phylogenetic tree. These results suggest that SC09-Ysa and SPI1-T3SS appear to mediate biological function to adapt to specific hosts with a similar niche, and both of them are likely to facilitate the development of an intracellular niche. In addition, our analysis also indicated that a substantial part of the SC09 genome might contribute to adaption in the intestinal microenvironment, including a number of proteins associated with aerobic or anaerobic respiration, signal transduction, and various stress reactions. Genomic analysis of the bacterium offered insights into the pathogenic mechanism associated with intracellular infection and intestinal survivability, which constitutes an important first step in understanding the pathogenesis of Y. ruckeri.


The goose genome sequence leads to insights into the evolution of waterfowl and susceptibility to fatty liver.

  • Lizhi Lu‎ et al.
  • Genome biology‎
  • 2015‎

Geese were domesticated over 6,000 years ago, making them one of the first domesticated poultry. Geese are capable of rapid growth, disease resistance, and high liver lipid storage capacity, and can be easily fed coarse fodder. Here, we sequence and analyze the whole-genome sequence of an economically important goose breed in China and compare it with that of terrestrial bird species.


The E protein is a multifunctional membrane protein of SARS-CoV.

  • Qingfa Wu‎ et al.
  • Genomics, proteomics & bioinformatics‎
  • 2003‎

The E (envelope) protein is the smallest structural protein in all coronaviruses and is the only viral structural protein in which no variation has been detected. We conducted genome sequencing and phylogenetic analyses of SARS-CoV. Based on genome sequencing, we predicted the E protein is a transmembrane (TM) protein characterized by a TM region with strong hydrophobicity and alpha-helix conformation. We identified a segment (NH2-_L-Cys-A-Y-Cys-Cys-N_-COOH) in the carboxyl-terminal region of the E protein that appears to form three disulfide bonds with another segment of corresponding cysteines in the carboxyl-terminus of the S (spike) protein. These bonds point to a possible structural association between the E and S proteins. Our phylogenetic analyses of the E protein sequences in all published coronaviruses place SARS-CoV in an independent group in Coronaviridae and suggest a non-human animal origin.


Genome sequence of the agarwood tree Aquilaria sinensis (Lour.) Spreng: the first chromosome-level draft genome in the Thymelaeceae family.

  • Xupo Ding‎ et al.
  • GigaScience‎
  • 2020‎

Aquilaria sinensis (Lour.) Spreng is one of the important plant resources involved in the production of agarwood in China. The agarwood resin collected from wounded Aquilaria trees has been used in Asia for aromatic or medicinal purposes from ancient times, although the mechanism underlying the formation of agarwood still remains poorly understood owing to a lack of accurate and high-quality genetic information.


Sequence and cultivation study of Muribaculaceae reveals novel species, host preference, and functional potential of this yet undescribed family.

  • Ilias Lagkouvardos‎ et al.
  • Microbiome‎
  • 2019‎

Bacteria within family S24-7 (phylum Bacteroidetes) are dominant in the mouse gut microbiota and detected in the intestine of other animals. Because they had not been cultured until recently and the family classification is still ambiguous, interaction with their host was difficult to study and confusion still exists regarding sequence data annotation.


Protein profiling reveals potential isomiR-associated cross-talks among RNAs in cholangiocarcinoma.

  • Li Guo‎ et al.
  • Computational and structural biotechnology journal‎
  • 2021‎

Cholangiocarcinomas (CCAs) are tumors that arise from the cholangiocytes. Although some genes have been shown with important roles in pathological process, interactions or cross-talks among different RNAs are important to understand the detailed molecular mechanisms in cancer development, especially discussing cross-talks among isomiRs and other RNAs. Herein, to characterize crucial genes in CCA, the protein expression profile was performed to survey potential crucial mRNAs and related non-coding RNAs (ncRNAs) in mRNA-ncRNA network, mainly including miRNAs/isomiRs and lncRNAs. Deregulated mRNAs were firstly obtained if consistent expression patterns were found at protein and mRNA levels, and related miRNAs/isomiRs were screened according to regulatory relationships. Diverse isomiRs from a given miRNA locus also contributed to interactions between the small RNAs and target mRNAs, and miRNAs were further used to survey related lncRNAs to expand the interactions. Thus, several groups of RNAs were constructed as candidate competitive endogenous RNA (ceRNA) networks. Finally, we found that RAB11FIP1:miR-101-3p:MIR3142HG may be a potential ceRNA network, and the interactions among them may be more complex due to variety of isomiRs. Simultaneously, RAB11FIP1 and miR-194-5p were also detected other related lncRNAs (FBXL19-AS1, SNHG1 and PVT1) that may be crucial in coding-non-coding RNA regulatory network. Our results show that diverse isomiRs with sequence and expression heterogeneities contribute to ceRNA regulatory network that may have crucial roles in CCA, which will expand our understanding of interactions among diverse RNAs and their contributions in cancer development.


A solute-binding protein for iron transport in Streptococcus iniae.

  • Lili Zou‎ et al.
  • BMC microbiology‎
  • 2010‎

Streptococcus iniae (S. iniae) is a major pathogen that causes considerable morbidity and mortality in cultured fish worldwide. The pathogen's ability to adapt to the host affects the extent of infection, hence understanding the mechanisms by which S. iniae overcomes physiological stresses during infection will help to identify potential virulence determinants of streptococcal infection. Grow S. iniae under iron-restricted conditions is one approach for identifying host-specific protein expression. Iron plays an important role in many biological processes but it has low solubility under physiological condition. Many microorganisms have been shown to be able to circumvent this nutritional limitation by forming direct contacts with iron-containing proteins through ATP-binding cassette (ABC) transporters. The ABC transporter superfamilies constitute many different systems that are widespread among living organisms with different functions, such as ligands translocation, mRNA translation, and DNA repair.


Protein phosphatase 2A regulatory subunit B56β modulates erythroid differentiation.

  • Jianping Wu‎ et al.
  • Biochemical and biophysical research communications‎
  • 2016‎

Anemia due to attenuated erythroid terminal differentiation is one of the most common hematological disorders occurring at all stages of life. We previously demonstrated that catalytic subunit α of protein phosphatase 2A (PP2Acα) modulates fetal liver erythropoiesis. However the corresponding PP2A regulatory subunit in this process remains unknown. In this study, we report that chemical inhibition of PP2A activity with okadaic acid impairs hemin-induced erythroid differentiation. Interestingly, B56 family member B56β is the only regulatory subunit whose expression is induced by both erythropoietin in fetal liver cells and hemin in erythroleukemia K562 cells. Finally, knockdown of B56β attenuates hemin-induced K562 erythroid differentiation. Collectively, our data identify B56β as the potential functional regulatory subunit of PP2A in erythroid differentiation, shedding light on new target for precise modulation of PP2A activity for treatment of anemia and related diseases.


The M protein of SARS-CoV: basic structural and immunological properties.

  • Yongwu Hu‎ et al.
  • Genomics, proteomics & bioinformatics‎
  • 2003‎

We studied structural and immunological properties of the SARS-CoV M (membrane) protein, based on comparative analyses of sequence features, phylogenetic investigation, and experimental results. The M protein is predicted to contain a triple-spanning transmembrane (TM) region, a single N-glycosylation site near its N-terminus that is in the exterior of the virion, and a long C-terminal region in the interior. The M protein harbors a higher substitution rate (0.6% correlated to its size) among viral open reading frames (ORFs) from published data. The four substitutions detected in the M protein, which cause non-synonymous changes, can be classified into three types. One of them results in changes of pI (isoelectric point) and charge, affecting antigenicity. The second changes hydrophobicity of the TM region, and the third one relates to hydrophilicity of the interior structure. Phylogenetic tree building based on the variations of the M protein appears to support the non-human origin of SARS-CoV. To investigate its immunogenicity, we synthesized eight oligopeptides covering 69.2% of the entire ORF and screened them by using ELISA (enzyme-linked immunosorbent assay) with sera from SARS patients. The results confirmed our predictions on antigenic sites.


The Statistical Trends of Protein Evolution: A Lesson from AlphaFold Database.

  • Qian-Yuan Tang‎ et al.
  • Molecular biology and evolution‎
  • 2022‎

The recent development of artificial intelligence provides us with new and powerful tools for studying the mysterious relationship between organism evolution and protein evolution. In this work, based on the AlphaFold Protein Structure Database (AlphaFold DB), we perform comparative analyses of the proteins of different organisms. The statistics of AlphaFold-predicted structures show that, for organisms with higher complexity, their constituent proteins will have larger radii of gyration, higher coil fractions, and slower vibrations, statistically. By conducting normal mode analysis and scaling analyses, we demonstrate that higher organismal complexity correlates with lower fractal dimensions in both the structure and dynamics of the constituent proteins, suggesting that higher functional specialization is associated with higher organismal complexity. We also uncover the topology and sequence bases of these correlations. As the organismal complexity increases, the residue contact networks of the constituent proteins will be more assortative, and these proteins will have a higher degree of hydrophilic-hydrophobic segregation in the sequences. Furthermore, by comparing the statistical structural proximity across the proteomes with the phylogenetic tree of homologous proteins, we show that, statistical structural proximity across the proteomes may indirectly reflect the phylogenetic proximity, indicating a statistical trend of protein evolution in parallel with organism evolution. This study provides new insights into how the diversity in the functionality of proteins increases and how the dimensionality of the manifold of protein dynamics reduces during evolution, contributing to the understanding of the origin and evolution of lives.


Inducible CYP4F12 enhances Hepatitis C virus infection via association with viral nonstructural protein 5B.

  • Sheng-Li Zhu‎ et al.
  • Biochemical and biophysical research communications‎
  • 2016‎

Hepatitis C virus (HCV) nonstructural protein 5B (NS5B) functions as an RNA-dependent RNA polymerase in the HCV replication complex derived from the endoplasmic reticulum in hepatic cells. In this study, NS5B was used as bait in a yeast two-hybrid assay to screen a human liver cDNA library. We confirmed that CYP4F12, a member of the cytochrome P450 superfamily, interacted with NS5B. Furthermore, overexpression of CYP4F12 facilitated HCV replication. In contrast, knockdown of CYP4F12 by specific shRNA decreased HCV replication and viral protein expression. Moreover, our results demonstrated that HCV infection increased the binding of the transcription factor SREBP1 to the CYP4F12 promoter and activated the promoter activity, which indicated that HCV infection increased the expression of CYP4F12 through the SREBP1 pathway. Our results showed that HCV infection induced expression of CYP4F12 protein, which bound to the HCV replication complex to facilitate viral replication.


Novel human BTB/POZ domain-containing zinc finger protein ZNF295 is directly associated with ZFP161.

  • Jun Wang‎ et al.
  • Biochemical and biophysical research communications‎
  • 2005‎

Human ZNF295 protein harbors a BTB/POZ domain and multiple krüppel (C(2)H(2)) type zinc finger domains, and thus belongs to a family of POK (POZ and krüppel) transcription factor. We have identified many transcript variants generated by the alternative splicing in 5' non-coding exons, an intra-exonic splicing in a coding region, and the use of three polyadenylation signals in the 3' UTR. The intra-exonic splicing removes 603-bp coding sequence, and thus ZNF295 gene produces two protein isoforms: ZNF295L with 1066 amino acid residues and ZNF295S with 865 amino acid residues, containing 9 and 5 zinc finger domains, respectively. ZNF295 is ubiquitously expressed in human fetal and adult tissues. Analysis of transcription activity of ZNF295 using various promoter-reporters demonstrated that ZNF295 acts as a transcription repressor, and contains two separate regions for repression activity: the BTB/POZ domain and the central region between BTB/POZ and ZF domains. Both ZNF295L and ZNF295S could interact not only with themselves and each other, but also with another POK protein ZFP161 known to function as a transcription repressor and an activator. We postulated that ZNF295 may be involved in the bi-directional control of gene expression in concert with ZFP161.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: