Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 2 papers out of 2 papers

SARS-CoV-2 Exposure in Norway Rats (Rattus norvegicus) from New York City.

  • Yang Wang‎ et al.
  • mBio‎
  • 2023‎

Millions of Norway rats (Rattus norvegicus) inhabit New York City (NYC), presenting the potential for transmission of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) from humans to rats. We evaluated SARS-CoV-2 exposure among 79 rats captured from NYC during the fall of 2021. Our results showed that 13 of the 79 rats (16.5%) tested IgG- or IgM-positive, and partial SARS-CoV-2 genomes were recovered from all 4 rats that were qRT-PCR (reverse transcription-quantitative PCR)-positive. Genomic analyses suggest these viruses were associated with genetic lineage B, which was predominant in NYC in the spring of 2020 during the early pandemic period. To further investigate rat susceptibility to SARS-CoV-2 variants, we conducted a virus challenge study and showed that Alpha, Delta, and Omicron variants can cause infections in wild-type Sprague Dawley (SD) rats, including high replication levels in the upper and lower respiratory tracts and induction of both innate and adaptive immune responses. Additionally, the Delta variant resulted in the highest infectivity. In summary, our results indicate that rats are susceptible to infection with Alpha, Delta, and Omicron variants, and wild Norway rats in the NYC municipal sewer systems have been exposed to SARS-CoV-2. Our findings highlight the need for further monitoring of SARS-CoV-2 in urban rat populations and for evaluating the potential risk of secondary zoonotic transmission from these rat populations back to humans. IMPORTANCE The host tropism expansion of SARS-CoV-2 raises concern for the potential risk of reverse-zoonotic transmission of emerging variants into rodent species, including wild rat species. In this study, we present both genetic and serological evidence for SARS-CoV-2 exposure to the New York City wild rat population, and these viruses may be linked to the viruses that were circulating during the early stages of the pandemic. We also demonstrated that rats are susceptible to additional variants (i.e., Alpha, Delta, and Omicron) that have been predominant in humans and that susceptibility to infection varies by variant. Our findings highlight the reverse zoonosis of SARS-CoV-2 to urban rats and the need for further monitoring of SARS-CoV-2 in rat populations for potential secondary zoonotic transmission to humans.


Diagnosis of Zika Virus Infection by Peptide Array and Enzyme-Linked Immunosorbent Assay.

  • Nischay Mishra‎ et al.
  • mBio‎
  • 2018‎

Zika virus (ZIKV) is implicated in fetal stillbirth, microcephaly, intracranial calcifications, and ocular anomalies following vertical transmission from infected mothers. In adults, infection may trigger autoimmune inflammatory polyneuropathy. Transmission most commonly follows the bite of infected Aedes mosquitoes but may also occur through sexual intercourse or receipt of blood products. Definitive diagnosis through detection of viral RNA is possible in serum or plasma within 10 days of disease onset, in whole blood within 3 weeks of onset, and in semen for up to 3 months. Serological diagnosis is nonetheless critical because few patients have access to molecular diagnostics during the acute phase of infection and infection may be associated with only mild or inapparent disease that does not prompt molecular testing. Serological diagnosis is confounded by cross-reactivity of immune sera with other flaviviruses endemic in the areas where ZIKV has recently emerged. Accordingly, we built a high-density microarray comprising nonredundant 12-mer peptides that tile, with one-residue overlap, the proteomes of Zika, dengue, yellow fever, West Nile, Ilheus, Oropouche, and chikungunya viruses. Serological analysis enabled discovery of a ZIKV NS2B 20-residue peptide that had high sensitivity (96.0%) and specificity (95.9%) versus natural infection with or vaccination against dengue, chikungunya, yellow fever, West Nile, tick-borne encephalitis, or Japanese encephalitis virus in a microarray assay and an enzyme-linked immunosorbent assay (ELISA) of early-convalescent-phase sera (2 to 3 weeks after onset of symptomatic infection).IMPORTANCE The emergence of Zika virus (ZIKV) as a teratogen is a profound challenge to global public health. Molecular diagnosis of infection is straightforward during the 3-week period when patients are viremic. However, serological diagnosis thereafter of historical exposure has been confounded by cross-reactivity. Using high-density peptide arrays that tile the proteomes of a selection of flaviviruses to identify a ZIKV-specific peptide, we established two assays that enable sensitive and specific diagnosis of exposure to ZIKV. These assays may be useful in guiding clinical management of mothers at risk for potential exposure to ZIKV and enable insights into the epidemiology of ZIKV infections.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: