Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 20 papers out of 1,509 papers

Hormone activity of hydroxylated polybrominated diphenyl ethers on human thyroid receptor-beta: in vitro and in silico investigations.

  • Fei Li‎ et al.
  • Environmental health perspectives‎
  • 2010‎

Hydroxylated polybrominated diphenyl ethers (HO-PBDEs) may disrupt thyroid hormone status because of their structural similarity to thyroid hormone. However, the molecular mechanisms of interactions with thyroid hormone receptors (TRs) are not fully understood.


Inhibition of cell proliferation by an anti-EGFR aptamer.

  • Na Li‎ et al.
  • PloS one‎
  • 2011‎

Aptamers continue to receive interest as potential therapeutic agents for the treatment of diseases, including cancer. In order to determine whether aptamers might eventually prove to be as useful as other clinical biopolymers, such as antibodies, we selected aptamers against an important clinical target, human epidermal growth factor receptor (hEGFR). The initial selection yielded only a single clone that could bind to hEGFR, but further mutation and optimization yielded a family of tight-binding aptamers. One of the selected aptamers, E07, bound tightly to the wild-type receptor (K(d) = 2.4 nM). This aptamer can compete with EGF for binding, binds to a novel epitope on EGFR, and also binds a deletion mutant, EGFRvIII, that is commonly found in breast and lung cancers, and especially in grade IV glioblastoma multiforme, a cancer which has for the most part proved unresponsive to current therapies. The aptamer binds to cells expressing EGFR, blocks receptor autophosphorylation, and prevents proliferation of tumor cells in three-dimensional matrices. In short, the aptamer is a promising candidate for further development as an anti-tumor therapeutic. In addition, Aptamer E07 is readily internalized into EGFR-expressing cells, raising the possibility that it might be used to escort other anti-tumor or contrast agents.


Identification of a linear epitope on the capsid protein of classical swine fever virus.

  • Xin Zhang‎ et al.
  • Virus research‎
  • 2011‎

The capsid (C) protein of Classical swine fever virus (CSFV) is proposed to play an essential role in the replication and translation of the viral RNA. In this study, a monoclonal antibody (mAb) directed against the C protein was generated with the recombinant C protein expressed in Escherichia coli as immunogen. IFA and IPMA analysis showed that the native C protein of CSFV virions was reactive to the mAb. By truncating the C protein, we identified a linear epitope recognized by the mAb, corresponding to amino acids (61)TQDGLYHNKN(70) of the CSFV C protein, which is well conserved among pestiviruses. Laser confocal analysis showed that the C protein mainly locates in the cellular nucleoplasm and nucleolus of PK-15 cells. The results have implications for further study of CSFV replication.


Establishment and characterization of patient-derived tumor xenograft using gastroscopic biopsies in gastric cancer.

  • Yan Zhu‎ et al.
  • Scientific reports‎
  • 2015‎

The patient-derived tumor xenograft (PDTX) model has become the most realistic model for preclinical studies. PDTX models of gastric cancer using surgical tissues are reported occasionally; however, the PDTX models using gastroscopic biopsies, which are best for evaluating new drugs, are unreported. In our study, a total of 185 fresh gastroscopic biopsies of gastric cancer were subcutaneously transplanted into NOD/SCID (Nonobese Diabetic/Severe Combined Immunodeficiency) mice. Sixty-three PDTX models were successfully established (34.1%, 63/185) and passaged to maintain tumors in vivo, and the mean latency period of xenografts was 65.86 ± 32.84 days (11-160 days). Biopsies of prior chemotherapy had a higher transplantation rate (52.1%, 37/71) than biopsies after chemotherapy (21.9%, 25/114; P = 0.000). No differences were found between the latency period of xenografts and characteristics of patients. The pathological and molecular features of PDTX as well as chemosensitivity were highly consistent with those of primary tumors of patients. The genetic characteristics were stable during passaging of PDTX models. In summary PDTX models using gastroscopic biopsies in gastric cancer were demonstrated for the first time, and the biological characteristics of the PDTX models were highly consistent with patients, which provided the best preclinical study platform for gastric cancer.


The frequency natural antisense transcript first promotes, then represses, frequency gene expression via facultative heterochromatin.

  • Na Li‎ et al.
  • Proceedings of the National Academy of Sciences of the United States of America‎
  • 2015‎

The circadian clock is controlled by a network of interconnected feedback loops that require histone modifications and chromatin remodeling. Long noncoding natural antisense transcripts (NATs) originate from Period in mammals and frequency (frq) in Neurospora. To understand the role of NATs in the clock, we put the frq antisense transcript qrf (frq spelled backwards) under the control of an inducible promoter. Replacing the endogenous qrf promoter altered heterochromatin formation and DNA methylation at frq. In addition, constitutive, low-level induction of qrf caused a dramatic effect on the endogenous rhythm and elevated circadian output. Surprisingly, even though qrf is needed for heterochromatic silencing, induction of qrf initially promoted frq gene expression by creating a more permissible local chromatin environment. The observation that antisense expression can initially promote sense gene expression before silencing via heterochromatin formation at convergent loci is also found when a NAT to hygromycin resistance gene is driven off the endogenous vivid (vvd) promoter in the Δvvd strain. Facultative heterochromatin silencing at frq functions in a parallel pathway to previously characterized VVD-dependent silencing and is needed to establish the appropriate circadian phase. Thus, repression via dicer-independent siRNA-mediated facultative heterochromatin is largely independent of, and occurs alongside, other feedback processes.


Prevalence of post-stroke cognitive impairment in china: a community-based, cross-sectional study.

  • Yanji Qu‎ et al.
  • PloS one‎
  • 2015‎

International hospital-based studies have indicated a high risk of cognitive impairment after stroke, evidence from community-based studies in China is scarce. To determine the prevalence of post-stroke cognitive impairment (PSCI) and its subtypes in stroke survivors residing in selected rural and urban Chinese communities, we conducted a community-based, cross-sectional study in 599 patients accounting for 48% of all stroke survivors registered in the 4 communities, who had suffered confirmed strokes and had undergone cognitive assessments via the Montreal Cognitive Assessment (MoCA), Mini-Mental State Examination (MMSE), and Hachinski Ischemia Scale (HIS). Detection of PSCI was based on scores in these neuropsychological scales. Factors potentially impacting on occurrence of PSCI were explored by comparing demographic characteristics, stroke features, and cardiovascular risk factors between patients with and without PSCI. The overall prevalence of PSCI was 80.97% (95%CI: 77.82%-84.11%), while that of non-dementia PSCI (PSCI-ND) and post-stroke vascular dementia (PSD) was 48.91% (95%CI: 44.91%-52.92%) and 32.05% (95%CI: 28.32%-35.79%), respectively. Prior stroke and complications during the acute phase were independent risk factors for PSCI. The risk of recurrent stroke survivors having PSCI was 2.7 times higher than for first-episode survivors, and it was 3 times higher for those with complications during the acute phase than for those without. The higher prevalence of PSCI in this study compared with previous Chinese studies was possibly due to the combined effects of including rural stroke survivors, a longer period from stroke onset, and different assessment methods. There is an urgent need to recognize and prevent PSCI in stroke patients, especially those with recurrent stroke and complications during the acute phase.


Vascular Adventitia Calcification and Its Underlying Mechanism.

  • Na Li‎ et al.
  • PloS one‎
  • 2015‎

Previous research on vascular calcification has mainly focused on the vascular intima and media. However, we show here that vascular calcification may also occur in the adventitia. The purpose of this work is to help elucidate the pathogenic mechanisms underlying vascular calcification. The calcified lesions were examined by Von Kossa staining in ApoE-/- mice which were fed high fat diets (HFD) for 48 weeks and human subjects aged 60 years and older that had died of coronary heart disease, heart failure or acute renal failure. Explant cultured fibroblasts and smooth muscle cells (SMCs)were obtained from rat adventitia and media, respectively. After calcification induction, cells were collected for Alizarin Red S staining. Calcified lesions were observed in the aorta adventitia and coronary artery adventitia of ApoE-/-mice, as well as in the aorta adventitia of human subjects examined. Explant culture of fibroblasts, the primary cell type comprising the adventitia, was successfully induced for calcification after incubation with TGF-β1 (20 ng/ml) + mineralization media for 4 days, and the phenotype conversion vascular adventitia fibroblasts into myofibroblasts was identified. Culture of SMCs, which comprise only a small percentage of all cells in the adventitia, in calcifying medium for 14 days resulted in significant calcification.Vascular calcification can occur in the adventitia. Adventitia calcification may arise from the fibroblasts which were transformed into myofibroblasts or smooth muscle cells.


Reverse Correlation between MicroRNA-145 and FSCN1 Affecting Gastric Cancer Migration and Invasion.

  • Jia-jia Chen‎ et al.
  • PloS one‎
  • 2015‎

MicroRNAs (miRs) play important roles in modulating gene expression during the processes of tumorigenesis and tumor development. Previous studies have found that miR-145 is down-regulated in the stomach neoplasm and is related to tumor migration and invasion. However, both the molecular mechanism and function of miR-145 in gastric cancer remain unclear. The present study is the first demonstration of the significant down-regulation of miR-145 expression in infiltrative gastric cancer compared to expanding gastric cancer. Additionally, correlation analyses revealed strong inverse correlations between miR-145 and FSCN1 expression levels in infiltrative gastric cancer. Furthermore, we demonstrated that miR-145 directly targets FSCN1 and suppresses cell migration and invasion in gastric cancer. Knocking down the expression of FSCN1 led to the suppression of migration and invasion in gastric cancer cells, and re-expressing FSCN1 in miR-145-overexpressing cells reversed their migration and invasion defects. Thus, we concluded that miR-145 regulates cell migration and invasion in gastric cancer primarily by directly targeting FSCN1.


VEGF111b, a C-terminal splice variant of VEGF-A and induced by mitomycin C, inhibits ovarian cancer growth.

  • Xiuli Li‎ et al.
  • Journal of translational medicine‎
  • 2015‎

Alternative splicing of VEGF-A gives rise to two families - the pro-angiogenic VEGFxxx family and the anti-angiogenic VEGFxxxb family that differ by only six amino acids at their C-terminal end. The first verified and widely reported VEGFxxxb family member is VEGF165b, and here VEGF165b is a positive control.


Cardiac H2S Generation Is Reduced in Ageing Diabetic Mice.

  • Sheng Jin‎ et al.
  • Oxidative medicine and cellular longevity‎
  • 2015‎

Aims. To examine whether hydrogen sulfide (H2S) generation changed in ageing diabetic mouse hearts. Results. Compared to mice that were fed tap water only, mice that were fed 30% fructose solution for 15 months exhibited typical characteristics of a severe diabetic phenotype with cardiac hypertrophy, fibrosis, and dysfunction. H2S levels in plasma, heart tissues, and urine were significantly reduced in these mice as compared to those in controls. The expression of the H2S-generating enzymes, cystathionine γ-lyase and 3-mercaptopyruvate sulfurtransferase, was significantly decreased in the hearts of fructose-fed mice, whereas cystathionine-β-synthase levels were significantly increased. Conclusion. Our results suggest that this ageing diabetic mouse model developed diabetic cardiomyopathy and that H2S levels were reduced in the diabetic heart due to alterations in three H2S-producing enzymes, which may be involved in the pathogenesis of diabetic cardiomyopathy.


Quantitative modeling of dose-response and drug combination based on pathway network.

  • Jiangyong Gu‎ et al.
  • Journal of cheminformatics‎
  • 2015‎

Quantitative description of dose-response of a drug for complex systems is essential for treatment of diseases and drug discovery. Given the growth of large-scale biological data obtained by multi-level assays, computational modeling has become an important approach to understand the mechanism of drug action. However, due to complicated interactions between drugs and cellular targets, the prediction of drug efficacy is a challenge, especially for complex systems. And the biological systems can be regarded as networks, where nodes represent molecular entities (DNA, RNA, protein and small compound) and processes, edges represent the relationships between nodes. Thus we combine biological pathway-based network modeling and molecular docking to evaluate drug efficacy.


CSIG promotes hepatocellular carcinoma proliferation by activating c-MYC expression.

  • Qian Cheng‎ et al.
  • Oncotarget‎
  • 2015‎

Cellular senescence-inhibited gene (CSIG) protein significantly prolongs the progression of replicative senescence, but its role in tumorigenesis is unclear. To reveal the role of CSIG in HCC, we determined its expression in HCC tissues and surrounding tissues and its functions in tumor cell proliferation in vitro and in vivo. CSIG protein was overexpressed in 86.4% of the human HCC cancerous tissues as compared with matched surrounding tissues, and its protein expression was greater in HCC cells than the non-transformed hepatic cell line L02. Furthermore, upregulation of CSIG significantly increased the colony formation of SMMC7721 and HepG2 cells, and silencing CSIG could induce cell cycle arrest and cell apoptosis. The tumorigenic ability of CSIG was confirmed in vivo in a mouse xenograft model. Our results showed that CSIG promoted the proliferation of HepG2 and SMMC7721 cells in vivo. Finally, CSIG protein directly interacted with c-MYC protein and increased c-MYC protein levels; the ubiquitination and degradation of c-MYC protein was increased with knockdown of CSIG. CSIG could also increase the expression of c-MYC protein in SMMC7721 cells in vivo, and it was noted that the level of c-MYC protein was also elevated in most human cancerous tissues with high level of CSIG.


The Natural Variation of Seed Weight Is Mainly Controlled by Maternal Genotype in Rapeseed (Brassica napus L.).

  • Na Li‎ et al.
  • PloS one‎
  • 2015‎

Seed weight is a very important and complex trait in rapeseed (Brassica napus L.). The seed weight of rapeseed shows great variation in its natural germplasm resources; however, the morphological, cytological and genetic causes of this variation have remained unclear. In the present study, nine highly pure inbred rapeseed lines with large seed weight variation and different genetic backgrounds were selected for morphological, cytological and genetic studies on seed weight. The results showed the following: (1) Seed weight showed an extremely significant correlation and coordinated variation with seed size (including seed diameter, seed surface area and seed volume), but it showed no significant correlation with bulk density, which suggests that seed weight is determined by size rather than bulk density. (2) Seed weight showed a higher correlation with the cell numbers of seed coats and cotyledons than the cell sizes of seed coats and cotyledons, which suggests that cell number is more tightly correlated with final seed weight. (3) Seed weight was mainly controlled by the maternal genotype, with little or no xenia and cytoplasmic effects. This is the first report on the morphological and cytological causes of seed weight natural variation in rapeseed. We concluded that the natural variation of seed weight is mainly controlled by maternal genotype. This finding lays a foundation for genetic and breeding studies of seed weight in rapeseed and opens a new field of research on the regulation of seed traits in plants.


A novel sterol regulatory element-binding protein gene (sreA) identified in penicillium digitatum is required for prochloraz resistance, full virulence and erg11 (cyp51) regulation.

  • Jing Liu‎ et al.
  • PloS one‎
  • 2015‎

Penicillium digitatum is the most destructive postharvest pathogen of citrus fruits, causing fruit decay and economic loss. Additionally, control of the disease is further complicated by the emergence of drug-resistant strains due to the extensive use of triazole antifungal drugs. In this work, an orthologus gene encoding a putative sterol regulatory element-binding protein (SREBP) was identified in the genome of P. digitatum and named sreA. The putative SreA protein contains a conserved domain of unknown function (DUF2014) at its carboxyl terminus and a helix-loop-helix (HLH) leucine zipper DNA binding domain at its amino terminus, domains that are functionally associated with SREBP transcription factors. The deletion of sreA (ΔsreA) in a prochloraz-resistant strain (PdHS-F6) by Agrobacterium tumefaciens-mediated transformation led to increased susceptibility to prochloraz and a significantly lower EC50 value compared with the HS-F6 wild-type or complementation strain (COsreA). A virulence assay showed that the ΔsreA strain was defective in virulence towards citrus fruits, while the complementation of sreA could restore the virulence to a large extent. Further analysis by quantitative real-time PCR demonstrated that prochloraz-induced expression of cyp51A and cyp51B in PdHS-F6 was completely abolished in the ΔsreA strain. These results demonstrate that sreA is a critical transcription factor gene required for prochloraz resistance and full virulence in P. digitatum and is involved in the regulation of cyp51 expression.


Microbial products induce claudin-2 to compromise gut epithelial barrier function.

  • Xiaoyu Liu‎ et al.
  • PloS one‎
  • 2013‎

The epithelial barrier dysfunction is an important pathogenic feature in a number of diseases. The underlying mechanism is to be further investigated. The present study aims to investigate the role of tight junction protein claudin-2 (Cldn2) in the compromising epithelial barrier function. In this study, the expression of Cldn2 in the epithelial layer of mice and patients with food allergy was observed by immunohistochemistry. The induction of Cldn2 was carried out with a cell culture model. The Cldn2-facilitated antigen internalization was observed by confocal microscopy. The epithelial barrier function in the gut epithelial monolayer was assessed by recording the transepithelial resistance and assessing the permeability to a macromolecular tracer. The results showed that the positive immune staining of Cldn2 was observed in the epithelial layer of the small intestine that was weakly stained in naïve control mice, and strongly stained in sensitized mice as well as patients with food allergy. Exposure to cholera toxin or Staphylococcal enterotoxin B induced the expression of Cldn2 in HT-29 or T84 cells. Cldn2 could bind protein antigen to form complexes to facilitate the antigen transport across the epithelial barrier. Blocking Cldn2 prevented the allergen-related hypersensitivity the intestine. We conclude that the tight junction protein Cldn2 is involved in the epithelial barrier dysfunction.


miR-222 is upregulated in epithelial ovarian cancer and promotes cell proliferation by downregulating P27kip1.

  • Chaoyang Sun‎ et al.
  • Oncology letters‎
  • 2013‎

Epithelial ovarian cancer (EOC) is the leading cause of female reproductive system cancer mortality in females. The majority of cases of ovarian carcinomas are not identified until a late stage. Identifying the molecular changes that occur during the development and progression of ovarian cancer is an urgent requirement. MicroRNAs (miRNAs) have been identified as gene expression regulators that induce mRNA degradation or translation blockade through pairing to the 3' untranslated region (3-'UTR) of the target mRNAs. In the present study, miR-222 was observed to be frequently upregulated in ovarian cancer. miR-222 upregulation induced an enhancement of ovarian cancer cell proliferation potential, possibly by downregulating its target, P27Kip1. A bioinformatic analysis showed that the 3'-UTR of the P27Kip1 mRNA contained a highly-conserved putative miR-222 binding site. Luciferase reporter assays demonstrated that P27Kip1 was a direct target of miR-222. Consistently, there was an inverse correlation between the P27Kip1 and miR-222 expression levels in the ovarian cancer cell lines and tissues. Overall, the present results suggest that miR-222 upregulation in human ovarian cancer may promote ovarian cancer cell proliferation during ovarian carcinogenesis.


MDRL lncRNA regulates the processing of miR-484 primary transcript by targeting miR-361.

  • Kun Wang‎ et al.
  • PLoS genetics‎
  • 2014‎

Long noncoding RNAs (lncRNAs) are emerging as new players in gene regulation, but whether lncRNAs operate in the processing of miRNA primary transcript is unclear. Also, whether lncRNAs are involved in the regulation of the mitochondrial network remains to be elucidated. Here, we report that a long noncoding RNA, named mitochondrial dynamic related lncRNA (MDRL), affects the processing of miR-484 primary transcript in nucleus and regulates the mitochondrial network by targeting miR-361 and miR-484. The results showed that miR-361 that predominantly located in nucleus can directly bind to primary transcript of miR-484 (pri-miR-484) and prevent its processing by Drosha into pre-miR-484. miR-361 is able to regulate mitochondrial fission and apoptosis by regulating miR-484 levels. In exploring the underlying molecular mechanism by which miR-361 is regulated, we identified MDRL and demonstrated that it could directly bind to miR-361 and downregulate its expression levels, which promotes the processing of pri-miR-484. MDRL inhibits mitochondrial fission and apoptosis by downregulating miR-361, which in turn relieves inhibition of miR-484 processing by miR-361. Our present study reveals a novel regulating model of mitochondrial fission program which is composed of MDRL, miR-361 and miR-484. Our work not only expands the function of the lncRNA pathway in gene regulation but also establishes a new mechanism for controlling miRNA expression.


(4-[6-(4-isopropoxyphenyl)pyrazolo [1,5-a]pyrimidin-3-yl] quinoline) is a novel inhibitor of autophagy.

  • Yue Sheng‎ et al.
  • British journal of pharmacology‎
  • 2014‎

Autophagy is an important intracellular degradation system, which is related to various diseases. In preliminary experiments we found that D4-[6-(4-isopropoxyphenyl)pyrazolo [1,5-a]pyrimidin-3-yl] quinoline (DMH1) inhibited autophagy responses. However DMH1 also inhibits the signalling pathway activated by bone morphogenetic protein-4 (BMP4). The aim of the present study was to elucidate the inhibitory effects of DMH1 on autophagy and the underlying mechanisms.


Inhibition of G protein-coupled P2Y2 receptor induced analgesia in a rat model of trigeminal neuropathic pain.

  • Na Li‎ et al.
  • Molecular pain‎
  • 2014‎

ATP and P2X receptors play important roles in the modulation of trigeminal neuropathic pain, while the role of G protein-coupled P2Y₂ receptors and the underlying mechanisms are less clear. The threshold and frequency of action potentials, fast inactivating transient K+ channels (IA) are important regulators of membrane excitability in sensory neurons because of its vital role in the control of the spike onset. In this study, pain behavior tests, QT-RT-PCR, immunohistochemical staining, and patch-clamp recording, were used to investigate the role of P2Y₂ receptors in pain behaviour.


β1,6 GlcNAc branches-modified PTPRT attenuates its activity and promotes cell migration by STAT3 pathway.

  • Jingjing Qi‎ et al.
  • PloS one‎
  • 2014‎

Receptor-like protein tyrosine phosphatases (RPTPs) are type I transmembrane glycoproteins with N-glycans whose catalytic activities are regulated by dimerization. However, the intrinsic mechanism involved in dimerizing processes remains obscure. In this study, receptor protein tyrosine phosphatase rho (PTPRT) is identified as a novel substrate of N-Acetylglucosaminyltransferase V (GnT-V). We show that addition of β1,6 GlcNAc branches on PTPRT prolongs PTPRT's cell-surface retention time. GnT-V overexpression enhances galectin-3's cell-surface retention and promotes PTPRT's dimerization mediated by galectin-3. Increased dimerization subsequently reduces PTPRT's catalytic activity on the dephosphorylation of signal transducer and activator of transcription 3 (STAT3) at tyrosine residue 705 (pY705 STAT3), then the accumulated pY705 STAT3 translocates into the nucleus. Collectively, these findings provide an insight into the molecular mechanism by which GnT-V promotes cell migration, suggesting that accumulation of β1,6 GlcNAc branched N-glycans promotes PTPRT's dimerization and decreases its catalytic activity, resulting in enhanced cell migratory capacity.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: