Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 17 papers out of 17 papers

Plasmodium falciparum kelch 13 Mutations, 9 Countries in Africa, 2014-2018.

  • Sarah E Schmedes‎ et al.
  • Emerging infectious diseases‎
  • 2021‎

The spread of drug resistance to antimalarial treatments poses a serious public health risk globally. To combat this risk, molecular surveillance of drug resistance is imperative. We report the prevalence of mutations in the Plasmodium falciparum kelch 13 propeller domain associated with partial artemisinin resistance, which we determined by using Sanger sequencing samples from patients enrolled in therapeutic efficacy studies from 9 sub-Saharan countries during 2014-2018. Of the 2,865 samples successfully sequenced before treatment (day of enrollment) and on the day of treatment failure, 29 (1.0%) samples contained 11 unique nonsynonymous mutations and 83 (2.9%) samples contained 27 unique synonymous mutations. Two samples from Kenya contained the S522C mutation, which has been associated with delayed parasite clearance; however, no samples contained validated or candidate artemisinin-resistance mutations.


Selection and spread of artemisinin-resistant alleles in Thailand prior to the global artemisinin resistance containment campaign.

  • Eldin Talundzic‎ et al.
  • PLoS pathogens‎
  • 2015‎

The recent emergence of artemisinin resistance in the Greater Mekong Subregion poses a major threat to the global effort to control malaria. Tracking the spread and evolution of artemisinin-resistant parasites is critical in aiding efforts to contain the spread of resistance. A total of 417 patient samples from the year 2007, collected during malaria surveillance studies across ten provinces in Thailand, were genotyped for the candidate Plasmodium falciparum molecular marker of artemisinin resistance K13. Parasite genotypes were examined for K13 propeller mutations associated with artemisinin resistance, signatures of positive selection, and for evidence of whether artemisinin-resistant alleles arose independently across Thailand. A total of seven K13 mutant alleles were found (N458Y, R539T, E556D, P574L, R575K, C580Y, S621F). Notably, the R575K and S621F mutations have previously not been reported in Thailand. The most prevalent artemisinin resistance-associated K13 mutation, C580Y, carried two distinct haplotype profiles that were separated based on geography, along the Thai-Cambodia and Thai-Myanmar borders. It appears these two haplotypes may have independent evolutionary origins. In summary, parasites with K13 propeller mutations associated with artemisinin resistance were widely present along the Thai-Cambodia and Thai-Myanmar borders prior to the implementation of the artemisinin resistance containment project in the region.


Genetic Analysis and Species Specific Amplification of the Artemisinin Resistance-Associated Kelch Propeller Domain in P. falciparum and P. vivax.

  • Eldin Talundzic‎ et al.
  • PloS one‎
  • 2015‎

Plasmodium falciparum resistance to artemisinin has emerged in the Greater Mekong Subregion and now poses a threat to malaria control and prevention. Recent work has identified mutations in the kelch propeller domain of the P. falciparum K13 gene to be associated artemisinin resistance as defined by delayed parasite clearance and ex vivo ring stage survival assays. Species specific primers for the two most prevalent human malaria species, P. falciparum and P. vivax, were designed and tested on multiple parasite isolates including human, rodent, and non- humans primate Plasmodium species. The new protocol described here using the species specific primers only amplified their respective species, P. falciparum and P. vivax, and did not cross react with any of the other human malaria Plasmodium species. We provide an improved species specific PCR and sequencing protocol that could be effectively used in areas where both P. falciparum and P. vivax are circulating. To design this improved protocol, the kelch gene was analyzed and compared among different species of Plasmodium. The kelch propeller domain was found to be highly conserved across the mammalian Plasmodium species.


Specificity of the IgG antibody response to Plasmodium falciparum, Plasmodium vivax, Plasmodium malariae, and Plasmodium ovale MSP119 subunit proteins in multiplexed serologic assays.

  • Jeffrey W Priest‎ et al.
  • Malaria journal‎
  • 2018‎

Multiplex bead assays (MBA) that measure IgG antibodies to the carboxy-terminal 19-kDa sub-unit of the merozoite surface protein 1 (MSP119) are currently used to determine malaria seroprevalence in human populations living in areas with both stable and unstable transmission. However, the species specificities of the IgG antibody responses to the malaria MSP119 antigens have not been extensively characterized using MBA.


Genotyping Oral Commensal Bacteria to Predict Social Contact and Structure.

  • Stephen Starko Francis‎ et al.
  • PloS one‎
  • 2016‎

Social network structure is a fundamental determinant of human health, from infectious to chronic diseases. However, quantitative and unbiased approaches to measuring social network structure are lacking. We hypothesized that genetic relatedness of oral commensal bacteria could be used to infer social contact between humans, just as genetic relatedness of pathogens can be used to determine transmission chains of pathogens. We used a traditional, questionnaire survey-based method to characterize the contact network of the School of Public Health at a large research university. We then collected saliva from a subset of individuals to analyze their oral microflora using a modified deep sequencing multilocus sequence typing (MLST) procedure. We examined micro-evolutionary changes in the S. viridans group to uncover transmission patterns reflecting social network structure. We amplified seven housekeeping gene loci from the Streptococcus viridans group, a group of ubiquitous commensal bacteria, and sequenced the PCR products using next-generation sequencing. By comparing the generated S. viridans reads between pairs of individuals, we reconstructed the social network of the sampled individuals and compared it to the network derived from the questionnaire survey-based method. The genetic relatedness significantly (p-value < 0.001) correlated with social distance in the questionnaire-based network, and the reconstructed network closely matched the network derived from the questionnaire survey-based method. Oral commensal bacterial are thus likely transmitted through routine physical contact or shared environment. Their genetic relatedness can be used to represent a combination of social contact and shared physical space, therefore reconstructing networks of contact. This study provides the first step in developing a method to measure direct social contact based on commensal organism genotyping, potentially capable of unmasking hidden social networks that contribute to pathogen transmission.


Efficacy of artemether-lumefantrine, artesunate-amodiaquine, and dihydroartemisinin-piperaquine for treatment of uncomplicated Plasmodium falciparum malaria in Angola, 2015.

  • Mateusz M Plucinski‎ et al.
  • Malaria journal‎
  • 2017‎

Recent anti-malarial resistance monitoring in Angola has shown efficacy of artemether-lumefantrine (AL) in certain sites approaching the key 90% lower limit of efficacy recommended for artemisinin-based combination therapy. In addition, a controversial case of malaria unresponsive to artemisinins was reported in a patient infected in Lunda Sul Province in 2013.


Multiplex serology for impact evaluation of bed net distribution on burden of lymphatic filariasis and four species of human malaria in northern Mozambique.

  • Mateusz M Plucinski‎ et al.
  • PLoS neglected tropical diseases‎
  • 2018‎

Universal coverage with long-lasting insecticidal nets (LLINs) is a primary control strategy against Plasmodium falciparum malaria. However, its impact on the three other main species of human malaria and lymphatic filariasis (LF), which share the same vectors in many co-endemic areas, is not as well characterized. The recent development of multiplex antibody detection provides the opportunity for simultaneous evaluation of the impact of control measures on the burden of multiple diseases.


Using the Plasmodium mitochondrial genome for classifying mixed-species infections and inferring the geographical origin of P. falciparum parasites imported to the U.S.

  • Sarah E Schmedes‎ et al.
  • PloS one‎
  • 2019‎

The ability to identify mixed-species infections and track the origin of Plasmodium parasites can further enhance the development of treatment and prevention recommendations as well as outbreak investigations. Here, we explore the utility of using the full Plasmodium mitochondrial genome to classify Plasmodium species, detect mixed infections, and infer the geographical origin of imported P. falciparum parasites to the United States (U.S.). Using the recently developed standardized, high-throughput Malaria Resistance Surveillance (MaRS) protocol, the full Plasmodium mitochondrial genomes of 265 malaria cases imported to the U.S. from 2014-2017 were sequenced and analyzed. P. falciparum infections were found in 94.7% (251/265) of samples. Five percent (14/265) of samples were identified as mixed- Plasmodium species or non-P. falciparum, including P. vivax, P. malariae, P. ovale curtisi, and P. ovale wallikeri. P. falciparum mitochondrial haplotypes analysis revealed greater than eighteen percent of samples to have at least two P. falciparum mitochondrial genome haplotypes, indicating either heteroplasmy or multi-clonal infections. Maximum-likelihood phylogenies of 912 P. falciparum mitochondrial genomes with known country origin were used to infer the geographical origin of thirteen samples from persons with unknown travel histories as: Africa (country unspecified) (n = 10), Ghana (n = 1), Southeast Asia (n = 1), and the Philippines (n = 1). We demonstrate the utility and current limitations of using the Plasmodium mitochondrial genome to classify samples with mixed-infections and infer the geographical origin of imported P. falciparum malaria cases to the U.S. with unknown travel history.


Clearance dynamics of lactate dehydrogenase and aldolase following antimalarial treatment for Plasmodium falciparum infection.

  • Mateusz M Plucinski‎ et al.
  • Parasites & vectors‎
  • 2019‎

Lingering post-treatment parasite antigen in blood complicates malaria diagnosis through antigen detection. Characterization of antigen clearance dynamics is important for interpretation of positive antigen detection tests.


Efficacy and safety of artesunate-amodiaquine and artemether-lumefantrine and prevalence of molecular markers associated with resistance, Guinea: an open-label two-arm randomised controlled trial.

  • Abdoul Habib Beavogui‎ et al.
  • Malaria journal‎
  • 2020‎

Anti-malarial resistance is a threat to recent gains in malaria control. This study aimed to assess the efficacy and safety of artesunate-amodiaquine (ASAQ) and artemether-lumefantrine (AL) in the management of uncomplicated malaria and to measure the prevalence of molecular markers of resistance of Plasmodium falciparum in sentinel sites in Maferinyah and Labé Health Districts in Guinea in 2016.


Evaluation of various distance computation methods for construction of haplotype-based phylogenies from large MLST datasets.

  • David Jacobson‎ et al.
  • Molecular phylogenetics and evolution‎
  • 2022‎

Multi-locus sequence typing (MLST) is widely used to investigate genetic relationships among eukaryotic taxa, including parasitic pathogens. MLST analysis workflows typically involve construction of alignment-based phylogenetic trees - i.e., where tree structures are computed from nucleotide differences observed in a multiple sequence alignment (MSA). Notably, alignment-based phylogenetic methods require that all isolates/taxa are represented by a single sequence. When multiple loci are sequenced these sequences may be concatenated to produce one tree that includes information from all loci. Alignment-based phylogenetic techniques are robust and widely used yet possess some shortcomings, including how heterozygous sites are handled, intolerance for missing data (i.e., partial genotypes), and differences in the way insertions-deletions (indels) are scored/treated during tree construction. In certain contexts, 'haplotype-based' methods may represent a viable alternative to alignment-based techniques, as they do not possess the aforementioned limitations. This is namely because haplotype-based methods assess genetic similarity based on numbers of shared (i.e., intersecting) haplotypes as opposed to similarities in nucleotide composition observed in an MSA. For haplotype-based comparisons, choosing an appropriate distance statistic is fundamental, and several statistics are available to choose from. However, a comprehensive assessment of various available statistics for their ability to produce a robust haplotype-based phylogenetic reconstruction has not yet been performed. We evaluated seven distance statistics by applying them to extant MLST datasets from the gastrointestinal parasite Cyclospora cayetanensis and two species of pathogenic nematode of the genus Strongyloides. We compare the genetic relationships identified using each statistic to epidemiologic, geographic, and host metadata. We show that Barratt's heuristic definition of genetic distance was the most robust among the statistics evaluated. Consequently, it is proposed that Barratt's heuristic represents a useful approach for use in the context of challenging MLST datasets possessing features (i.e., high heterozygosity, partial genotypes, and indel or repeat-based polymorphisms) that confound or preclude the use of alignment-based methods.


Evaluation of an ensemble-based distance statistic for clustering MLST datasets using epidemiologically defined clusters of cyclosporiasis.

  • Fernanda S Nascimento‎ et al.
  • Epidemiology and infection‎
  • 2020‎

Outbreaks of cyclosporiasis, a food-borne illness caused by the coccidian parasite Cyclospora cayetanensis have increased in the USA in recent years, with approximately 2300 laboratory-confirmed cases reported in 2018. Genotyping tools are needed to inform epidemiological investigations, yet genotyping Cyclospora has proven challenging due to its sexual reproductive cycle which produces complex infections characterized by high genetic heterogeneity. We used targeted amplicon deep sequencing and a recently described ensemble-based distance statistic that accommodates heterogeneous (mixed) genotypes and specimens with partial genotyping data, to genotype and cluster 648 C. cayetanensis samples submitted to CDC in 2018. The performance of the ensemble was assessed by comparing ensemble-identified genetic clusters to analogous clusters identified independently based on common food exposures. Using these epidemiologic clusters as a gold standard, the ensemble facilitated genetic clustering with 93.8% sensitivity and 99.7% specificity. Hence, we anticipate that this procedure will greatly complement epidemiologic investigations of cyclosporiasis.


One-step PCR: A novel protocol for determination of pfhrp2 deletion status in Plasmodium falciparum.

  • Sophie Jones‎ et al.
  • PloS one‎
  • 2020‎

Histidine-rich protein 2 (HRP2) detecting rapid diagnostic tests (RDTs) have played an important role in enabling prompt malaria diagnosis in remote locations. However, emergence of pfhrp2 deleted parasites is threatening the efficacy of RDTs, and the World Health Organization (WHO) has highlighted surveillance of these deletions as a priority. Nested PCR is used to confirm pfhrp2 deletion but is costly and laborious. Due to spurious amplification of paralogue pfhrp3, the identity of nested exon 1 PCR product must be confirmed by sequencing. Here we describe a new one-step PCR method for detection of pfhrp2. To determine sensitivity and specificity, all PCRs were performed in triplicate. Using photo-induced electron transfer (PET) PCR detecting 18srRNA as true positive, one-step had comparable sensitivity of 95.0% (88.7-98.4%) to nested exon 1, 99.0% (94.6-99.9%) and nested exon 2, 98.0% (93.0-99.8%), and comparable specificity 93.8% (69.8-99.8%) to nested exon 1 100.0% (79.4-100.0%) and nested exon 2, 100.0% (74.4-100.0%). Sequencing revealed that one step PCR does not amplify pfhrp3. Logistic regression models applied to measure the 95% level of detection of the one-step PCR in clinical isolates provided estimates of 133p/μL (95% confidence interval (CI): 3-793p/μL) for whole blood (WB) samples and 385p/μL (95% CI: 31-2133 p/μL) for dried blood spots (DBSs). When considering protocol attributes, the one-step PCR is less expensive, faster and more suitable for high throughput. In summary, we have developed a more accurate PCR method that may be ideal for the application of the WHO protocol for investigating pfhrp2 deletions in symptomatic individuals presenting to health care facilities.


Continued Low Efficacy of Artemether-Lumefantrine in Angola in 2019.

  • Pedro Rafael Dimbu‎ et al.
  • Antimicrobial agents and chemotherapy‎
  • 2021‎

Biennial therapeutic efficacy monitoring is a crucial activity for ensuring the efficacy of currently used artemisinin-based combination therapy in Angola. Children with acute uncomplicated Plasmodium falciparum infection in sentinel sites in the Benguela, Zaire, and Lunda Sul Provinces were treated with artemether-lumefantrine (AL) or artesunate-amodiaquine (ASAQ) and monitored for 28 days to assess clinical and parasitological responses. Molecular correction was performed using seven microsatellite markers. Samples from treatment failures were genotyped for the pfk13, pfcrt, and pfmdr1 genes. Day 3 clearance rates were ≥95% in all arms. Uncorrected day 28 Kaplan-Meier efficacy estimates ranged from 84.2 to 90.1% for the AL arms and 84.7 to 100% for the ASAQ arms. Corrected day 28 estimates were 87.6% (95% confidence interval [CI], 81 to 95%) for the AL arm in Lunda Sul, 92.2% (95% CI, 87 to 98%) for AL in Zaire, 95.6% (95% CI, 91 to 100%) for ASAQ in Zaire, 98.4% (95% CI, 96 to 100%) for AL in Benguela, and 100% for ASAQ in Benguela and Lunda Sul. All 103 analyzed samples had wild-type pfk13 sequences. The 76T pfcrt allele was found in most (92%; 11/12) ASAQ late-failure samples but in only 16% (4/25) of AL failure samples. The N86 pfmdr1 allele was found in 97% (34/35) of treatment failures. The AL efficacy in Lunda Sul was below the 90% World Health Organization threshold, the third time in four rounds that this threshold was crossed for an AL arm in Angola. In contrast, the observed ASAQ efficacy has not been below 95% to date in Angola, including this latest round.


Multiplex malaria antigen detection by bead-based assay and molecular confirmation by PCR shows no evidence of Pfhrp2 and Pfhrp3 deletion in Haiti.

  • Camelia Herman‎ et al.
  • Malaria journal‎
  • 2019‎

The Plasmodium falciparum parasite is the only human malaria that produces the histidine-rich protein 2 and 3 (HRP2/3) antigens. Currently, HRP2/3 are widely used in malaria rapid diagnostic tests (RDTs), but several global reports have recently emerged showing genetic deletion of one or both of these antigens in parasites. Deletion of these antigens could pose a major concern for P. falciparum diagnosis in Haiti which currently uses RDTs based solely on the detection of the HRP2/3 antigens.


Targeted deep amplicon sequencing of kelch 13 and cytochrome b in Plasmodium falciparum isolates from an endemic African country using the Malaria Resistance Surveillance (MaRS) protocol.

  • Mariangela L'Episcopia‎ et al.
  • Parasites & vectors‎
  • 2020‎

Routine molecular surveillance for imported drug-resistant malaria parasites to the USA and European Union is an important public health activity. The obtained molecular data are used to help keep chemoprophylaxis and treatment guidelines up to date for persons traveling to malaria endemic countries. Recent advances in next-generation sequencing (NGS) technologies provide a new and effective way of tracking malaria drug-resistant parasites.


Molecular Markers of Sulfadoxine-Pyrimethamine Resistance in Samples from Children with Uncomplicated Plasmodium falciparum at Three Sites in Angola in 2019.

  • Stefano R Rosillo‎ et al.
  • Antimicrobial agents and chemotherapy‎
  • 2023‎

Sulfadoxine-pyrimethamine (SP) is used for prevention of malaria in pregnant women in Angola. We sequenced the Plasmodium falciparum dihydrofolate reductase (pfdhfr) and dihydropteroate synthase (pfdhps) genes, implicated in SP resistance, in samples collected during a 2019 study of artemisinin-based combination therapy efficacy in Benguela, Lunda Sul, and Zaire provinces. A total of 90 day 0 and day of failure samples were individually sequenced, while 508 day 0 samples from participants without recurrent parasitemia were pooled after DNA extraction into 61 pools. The N51I, C59R, and S108N pfdhfr mutations and A437G pfdhps mutations were present at high proportions in all provinces (weighted allele frequencies, 62% to 100%). The K540E pfdhps mutation was present at lower proportions (10% to 14%). The A581G pfdhps mutation was only observed in Zaire, at a 4.6% estimated prevalence. The I431V and A613S mutations were also only observed in Zaire, at a prevalence of 2.8% to 2.9%. The most common (27% to 66%) reconstructed haplotype in all three provinces was the canonical quadruple pfdhfr pfdhps mutant. The canonical quintuple mutant was absent in Lunda Sul and Benguela and present in 7.9% of samples in Zaire. A single canonical sextuple (2.6%) mutant was observed in Zaire Province. Proportions of the pfdhps K540E and A581G mutations were well below the World Health Organization thresholds for meaningful SP resistance (prevalence of 95% for K540E and 10% for A581G). Samples from therapeutic efficacy studies represent a convenient source of samples for monitoring SP resistance markers.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: